SDMS US EPA Region V

Imagery Insert Form

Document ID:

174580

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

	Specify Type of Document(s) / Comments:
	ELLS IN TABLE 4-2; TWO ROWS READING "DRUM INVENTORY" AND "HAZCAT ATION"; SOME CHAIN OF CUSTODY REPORTS AT THE END
Unless othe	COLOR or RESOLUTION variations. rwise noted, these pages are available in monochrome. The source document page(s) is more legible e original document is available for viewing at the Superfund Records Center.
	Specify Type of Document(s) / Comments:
This docum	Il Business Information (CBI). Identically sensitive information. Due to confidentiality, materials with such information are four may contact the EPA Superfund Records Manager if you wish to view this document.
This docum	ent contains highly sensitive information. Due to confidentiality, materials with such information are
Unscannal Oversized Due to cer	nent contains highly sensitive information. Due to confidentiality, materials with such information are out on a contact the EPA Superfund Records Manager if you wish to view this document.
Unscannal Oversized Due to cer	sent contains highly sensitive information. Due to confidentiality, materials with such information are four may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Let Material: Let Or Let Format. Let Specify Type of Document page(s) is not available in SDMS. The comment page(s) is not available in SDMS.
Unscannal Oversized Due to cer	sent contains highly sensitive information. Due to confidentiality, materials with such information are four may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Specify Type of Document(s) / Comments:
Unscannal Oversized Due to cer document i	sent contains highly sensitive information. Due to confidentiality, materials with such information are four may contact the EPA Superfund Records Manager if you wish to view this document. Specify Type of Document(s) / Comments: Specify Type of Document(s) / Comments:

Rev. 07/10/02

ROY F. WESTON, INC.

SITE ASSESSMENT REPORT
FOR
SYBILL, INC.
DETROIT, WAYNE COUNTY, MICHIGAN

SITE ASSESSMENT REPORT FOR SYBILL, INC. DETROIT, WAYNE COUNTY, MICHIGAN

Prepared for

U.S. Environmental Protection Agency
Emergency and Remedial Response Branch
Region V
77 West Jackson Boulevard
Chicago, Illinois 60604

Prepared by

Weston Solutions, Inc. 750 East Bunker Court, Suite 500 Vernon Hills, Illinois 60061

November 2002

Prepared by Jana	[Ng	Date _	1/22/02
	Sarah L. Meyer		/
	START Associate Project	Scientist	
Approved by	eff.	Date	11/22/22
Approved by	Stran	Date	11/22/02

Dean F. Geers START Program Manager

Weston Solutions, Inc.
3 First National Plaza, Suite 1990
70 W. Madison Street
Chicago, IL 60602-4206
312-424-3300 • Fax 312-424-3330
www.westonsolutions.com

22 November 2002

Mr. Brian Kelly
On Scene Coordinator
U.S. Environmental Protection Agency
Region V
9311 Groh Road
Gross Ile, MI 48138

TDD No.: S05-0209-005 DCN: 309-2A-ACOJ

Subject:

Sybill Inc. Site

Site Assessment Report, Revision 0

Dear Mr. Kelly:

Weston Solutions, Inc. (WESTON_®) is pleased to submit one copy of the Site Assessment Report, Revision 0, for the Sybill Inc. Site in Detroit, Michigan.

Should you have any questions or require additional information, please feel free to contact me at (312) 424-3303.

Very truly yours,

WESTON SOLUTIONS, INC.

Sarah Meyer

Associate Project Scientist

cc:

Gail Nabasny, START Project Officer, U.S. EPA, Region V (SE-5J)

Kevin Axe, START Project Manager, WESTON

site files

SITE ASSESSMENT REPORT FOR SYBILL, INC. DETROIT, WAYNE COUNTY, MICHIGAN

Prepared for

U.S. Environmental Protection Agency

Emergency and Remedial Response Branch Region V 77 West Jackson Boulevard Chicago, Illinois 60604

Prepared by

Weston Solutions, Inc.

750 East Bunker Court, Suite 500 Vernon Hills, Illinois 60061

Date Prepared	22 November 2002
TDD Number	S05-0209-005
Analytical TDD Number	S05-0210-003
Document Control Number	309-2A-ACOJ
Contract Number	68-W-00-119
START Project Manager	Kevin Axe, P.G.
Telephone No.	(312) 424-3317
U.S. EPA On-Scene Coordinator	Brian Kelly

TABLE OF CONTENTS

Section			Page
1	INTRODU		1-1
		ECTIVES AND SCOPE OF SITE ASSESSMENT	1-1
	1.2 REP	ORT ORGANIZATION	1-2
2		KGROUND	2-1
		E DESCRIPTION	2-1
		E HISTORY	2-2
	2.3 PRE	VIOUS ENVIRONMENTAL INVESTIGATIONS	2-3
3	ENVIRON	MENTAL INVESTIGATION PROCEDURES	3-1
	3.1 SITI	E CONDITIONS	3-1
		MPLING ACTIVITIES	3-4
	3.3 ANA	ALYSIS PLAN	3-6
	3.4 DEC	CONTAMINATION PROCEDURES	3-7
4	ENVIRON	MENTAL INVESTIGATION RESULTS	4-1
	4.1 USE	ED OIL ANALYTICAL RESULTS	4-1
	4.1.	$\boldsymbol{\varepsilon}$	4-1
	4.1.2		4-2
	4.1.3		4-3
	4.1.4	4 SVOCs in Used Oil	4-3
	4.1.5		4-4
	4.1.0		4-4
	4.2 CH	ARACTERISTICS OF HAZARDOUS WASTE IN WASTE PRODUCTS	4-4
	4.2.	1 TCLP Metals in Waste Product Samples	4-5
	4.2.2	2 TCLP VOCs in Waste Product Samples	4-5
	4.2.3	3 TCLP SVOCs in Waste Product Samples	4-5
	4.2.	4 TCLP PCBs in Waste Product Samples	4-5
	4.2.:	Other Characteristics of Hazardous Waste	4-5
5	THREATS	TO HUMAN HEALTH AND THE ENVIRONMENT	5-1
	5.1 THE	REATS FROM OIL WASTE ON SITE	5-1
	5.2 THI	REATS FROM HAZARDOUS WASTE AND POTENTIALLY	
	HAZ	ZARDOUS WASTE ON SITE	5-2
6	CONCLUS	SION AND RECOMMENDATIONS	6-1
	6.1 COI	NCLUSION	6-1
	6.2 REC	COMMENDATION	6-3
	6.2.	1 Estimated Volume of Oil Waste on Site	6-3
	6.2.	2 Estimated Volume of Potentially Hazardous Waste on Site	6-4
7	REFEREN	ICES	7-1

I/WO\START\ i 309-2A-ACOJ

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
2-1	Topographical Site Location Map	2-5
2-2	Facility Layout Map	2-7
3-1	22 October 2002 Sampling Locations	3-8

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
3-1	On Site Used Oil Inventory	3-9
3-2	On Site Potentially Hazardous Waste Inventory	3-10
3-3	Results of Field Screening of Used Oil	3-11
3-4	Results of Field Screening of Waste Products	3-12
4-1	Analytical Results for Used Oil Samples	4-7
4-2	Analytical Results for Waste Product Samples	4-8

I:\WO\START\ iii 309-2A-ACOJ

LIST OF APPENDICES

Appendix

- A. Photo Log
- B. Drum Log
- C. Sampling Forms
- D. Summary Tables of Sample Description and Analytical Results
- E. Analytical Data
- F. Sample Chains of Custody

LIST OF ABBREVIATIONS AND ACRONYMS

AST Aboveground Storage Tank

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CFR Code of Federal Regulations

DWSD Detroit Water and Sewerage Department

EL Engineering Labs, Inc.

°F degrees Fahrenheit

FRP Facility Response Plan

GM General Motors, Inc.

LEL lower explosive limit

MDEQ Michigan Department of Environmental Quality

mg/kg milligrams per kilogram mg/L milligrams per liter

NCP National Oil and Hazardous Substances Contingency Plan

OPA Oil Pollution Act
OSC On-Scene Coordinator

PCBs polychlorinated biphenyl compounds POTW Publicly Owned Treatment Works PPE personal protective equipment

RCRA Resource Conservation Recovery Act

SPCC Plan Spill Prevention, Control and Countermeasures Plan START Superfund Technical Assessment and Response Team

SVOCs semivolatile organic compounds

Sybill Sybill, Inc.

TCLP Toxicity Characteristics Leaching Procedure

TDD Technical Document Directive ug/kg micrograms per kilogram

U.S. EPA United States Environmental Protection Agency

USC Unites States Code

VOCs volatile organic compounds WESTON Weston Solutions, Inc.

I/WO/STARTY 309-2A-ACOJ

Revision: 0

Date: 22 November 2002 Page:1 of 3

SECTION 1

INTRODUCTION

On 22 October 2002, United States Environmental Protection Agency (U.S. EPA) On-Scene

Coordinators (OSCs) Ross Powers and Jeffrey Kimble and the Weston Solutions, Inc. (WESTON_®)

Superfund Technical Assessment and Response Team (START) completed a site assessment at the

Sybill Inc. (Sybill) site, located in Detroit, Wayne County, Michigan. The site assessment activities

were conducted under Technical Document Directive (TDD) S05-0209-005. The analysis of the

samples collected during the site assessment was completed under TDD S05-0210-003.

1.1 OBJECTIVES AND SCOPE OF SITE ASSESSMENT

The objective of this site assessment was to gather information to characterize the current on-site

environmental concerns the presence used oil, hazardous waste, and unknown substances poses.

This site assessment was also completed to evaluate the need for further investigation or removal

action. Specific objectives of the site assessment are as follows:

• Determine the nature of the contents of selected on-site aboveground storage tanks

(ASTs);

Determine the nature of the contents of selected on-site laboratory containers;

Determine the nature of the contents of selected on-site drums and totes;

Estimate the total volume of waste oil and potentially hazardous waste on-site;

• Determine the related potential threats to human health and the environment, and

I:\WO\START\32020S-1.WPD

309-2A-ACOJ

Section 1

Revision: 0 Date: 22 November 2002 Page: 2 of 3

• Evaluate the need for further site characterization, remediation, or removal.

To accomplish these objectives, the site assessment activities consisted of collecting samples from on-site ASTs, laboratory containers, drums and totes selectively analyzing the samples for organic and inorganic parameters and characteristics of used oil and hazardous waste.

1.2 REPORT ORGANIZATION

This site assessment report is organized into the following sections.

<u>Section 1: Introduction</u> – The Introduction provides a brief description of the objective and scope of the site assessment activities.

<u>Section 2: Site Background</u> – A site description, the site history, and a summary of previous investigations is provided.

<u>Section 3: Environmental Investigation Procedures</u> – The Environmental Investigation Procedures section describes the methods and procedures used during the site assessment activities.

<u>Section 4: Environmental Investigation Results</u> – The Environmental Investigation Results section describes the results of sample analysis.

<u>Section 5: Characterization of On-Site Waste</u> – This section provides a discussion of the difference between waste oil and hazardous waste streams on-site and the application of Oil Pollution Act (OPA) and Comprehensive Environmental Response, Conservation and Liability Act (CERCLA) regulations.

<u>Section 6: Threats to Human Health and the Environment</u> – Conditions that warrant a removal action under the National Oil and Hazardous Substances Contingency Plan (NCP) are identified.

Sybill Inc. Site Site Assessment Report Section 1 Revision: 0 Date: 22 November 2002 Page: 3 of 3

<u>Section 7: Conclusions and Recommendations</u> – The findings of the site assessment activities are summarized and recommendations for further activities are provided.

<u>Section 8: References</u> – The References section provides a list of references utilized in compiling the report.

I:\WO\START\32020S-1.WPD 309-2A-ACOJ

Section 2 Revision: 0 Date: 22 November 2002

Page: 2 of 4

2.2 **SITE HISTORY**

At one time, Sybill functioned as a water treatment facility for the City of Detroit. The facility

eventually began to function as a used oil processing plant, filling the on-site ASTs and clarifiers that

were designed for water treatment with oil and waste products from local industry. During

operations as a used oil processing facility, Sybill was sited with various regulatory violations and

had many difficulties with the Detroit Water and Sewerage Department (DWSD) and Michigan

Department of Environmental Quality (MDEQ).

In addition, in June 2001, city-issued operating permits were eventually revoked, and all utility

services were terminated due to regulatory violations. The City of Detroit has reported that on-site

drains discharging to the municipal sewer system had been "plugged up" to halt all contributions to

the Publicly Owned Treatment Works (POTW) or storm sewers from Sybill. However, Sybill

continued to receive waste oil even after the utilities had been disconnected. Sybill stockpiled waste

in all of the available on-site containers and tanks until the end of August 2001. Once the waste

storage capacity of the facility was reached, Sybill management filed for bankruptcy and abandoned

the facility. During operations, the facility was owned and operated by Mr. William Madeus.

General Motors, Inc. (GM) reportedly contributed 70% of incoming waste to the site during its

operation as a used oil processing facility. As a potentially responsible party (PRP) for the

environmental conditions at Sybill, GM contracted Engineering Labs, Inc. (EL) to perform remedial

activities at the site after the facility was abandoned. EL has estimated that the facility had been

storing approximately 2 million gallons of waste oil prior to removal GM's efforts. EL has also

reported that as of May 2002, approximately 400,000 gallons of waste oil remain on-site.

1/WO\START\32020S-2.WPD 309-2A-ACOJ

Section 2 Revision: 0

Date: 22 November 2002

Page: 3 of 4

2.3 PREVIOUS ENVIRONMENTAL INVESTIGATION

On 10 and 13 May 2002, U.S. EPA and START investigated the Sybill property as part of an

investigation into the River Rouge oil spill that occurred in early April 2002. U.S. EPA and START

sorted through paperwork that was left in the abandoned office building, visually inspected ASTs,

drums, totes, sewers, and containment areas and also documented site conditions. Used oil

fingerprint samples were collected in an effort to determine if the oil being stored on-site matched

oil spilled in the River Rouge. According to both the U.S. EPA's Emergency Response Team (ERT)

and the United States Coast Guard (USCG) Marine Safety Laboratory (MSL), the samples did not

match the spill material. However, conditions noted on-site during this investigation were suspected

to be a threat to human health and the environment; therefore, the May 2002 investigations led to

the October 2002 site assessment documented in this report

The results of the records search at Sybill's abandoned offices yielded information about the facility

operations. An outdated copy of the facility's Spill Prevention, Control, and Countermeasures

(SPCC) Plan was located, but no Facility Response Plan (FRP) was found. Direct information

concerning on-site tank contents was not available. Documents reviewed on-site revealed the

following permit violations and regulatory agency site visits for Sybill:

1) The City of Detroit issued Sybill nine volume and effluent violations for wastewater

discharge from 2 September 1999 through 11 August 2000.

2) The U.S. EPA performed a facility audit at Sybill on 28 March 2000.

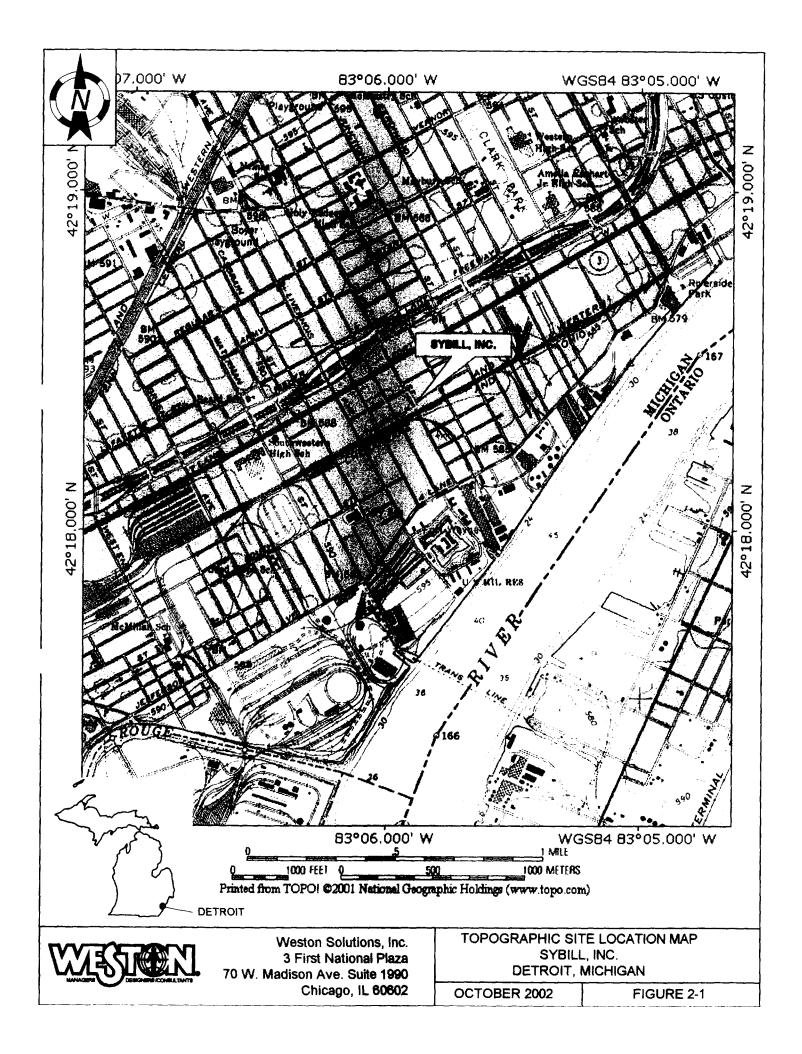
3) On five separate occasions from 29 March 2000 to 7 April 2001, W. Goeddeke of the

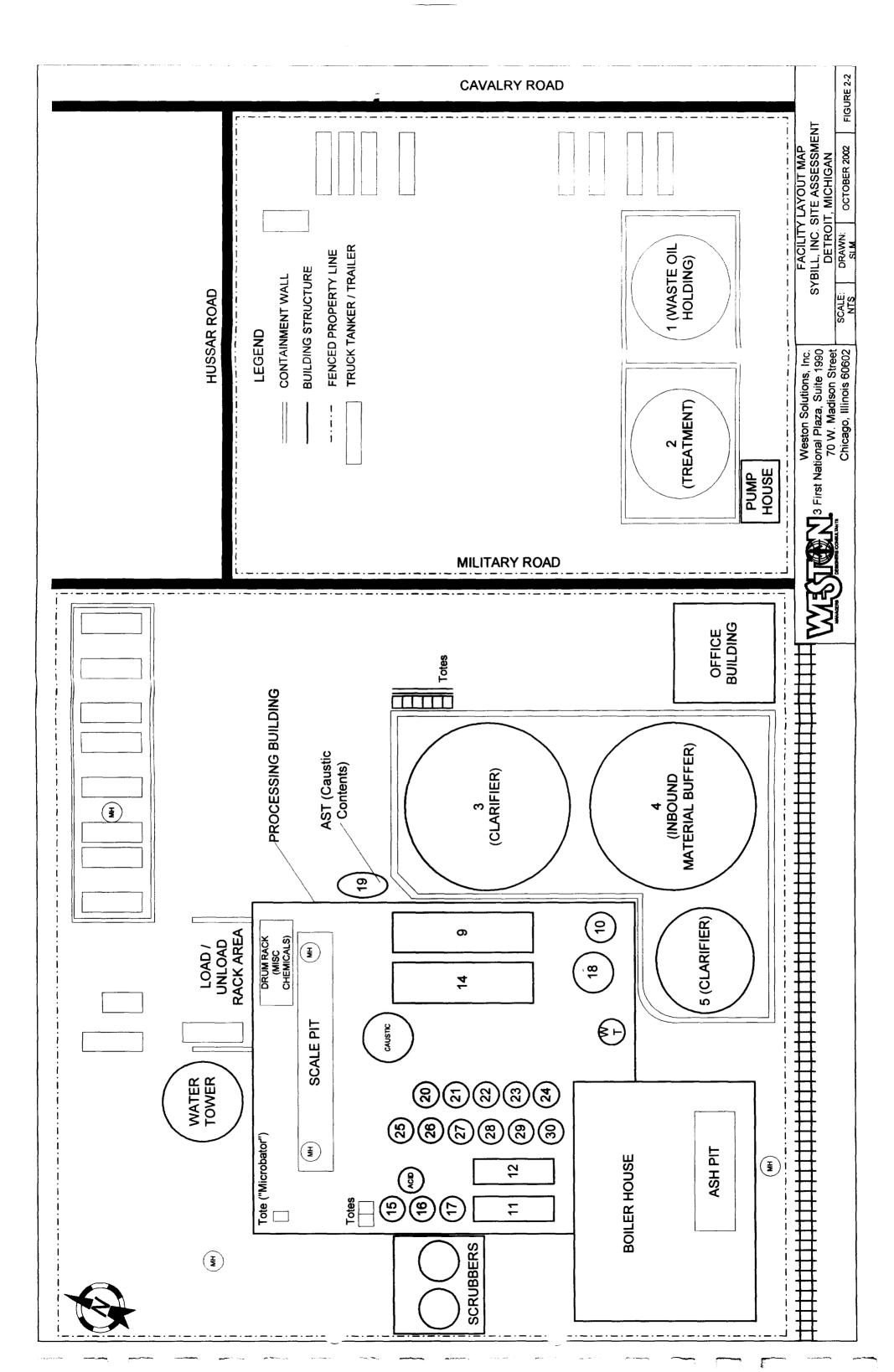
Wayne County Division of Air Quality visited Sybill in response to odor complaints

from neighboring properties or to conduct site inspections.

4) The Wayne County Division of Air Quality issued Sybill at least one violation. The

date of this citation is unknown.


1:\WO\\$TART\32020S-2.WPD 309-2A-ACOJ


Section 2 Revision: 0

Date: 22 November 2002 Page: 4 of 4

Other notes regarding facility operations were found in a logbook kept by a Sybill employee. In the logbook, odor complaints from surrounding neighbors were noted on 12 separate occasions between 15 September 1999 and 29 March 2000. The entry from 18 September 1999 indicated that the complainant said the odors smelled like "burning meat." A note in the logbook dated 23 November 1999 stated that SRS, Inc. (currently known as Sybill) "has been accepting rancid anaerobic material that has been rejected" by other facilities.

I:\WO\\$TART\32020S-2.WPD 309-2A-ACOJ

Section 3 Revision: 0

Date: 22 November 2002 Page: 1 of 7

SECTION 3

ENVIRONMENTAL INVESTIGATION PROCEDURES

On 22 October 2002, WESTON START personnel conducted a site assessment of the Sybill

property to collect both used oil and waste samples as well as field data to establish if hazardous

materials were present. If present, analytical data would help to determine if the hazardous materials

posed a significant threat to human health or the environment. Site investigation personnel included

OSCs Ross Powers and Jeffrey Kimble (U.S. EPA) and Sarah Meyer, Daniel Capone, and Ray

Moffett (START). Also on site during the investigation were James Ferritto, Jr. of MDEQ and

LaReina Reit of the City of Detroit. Specific site assessment observations and activities are detailed

below.

3.1 <u>SITE CONDITIONS</u>

At the time of this assessment, access to the site was unrestricted. A chain-link and barbed-wire

fence surrounds both portions of the site; however, breaks in the fence and numerous unlocked gates

allowed access at multiple locations. The gate at the pump house (Appendix A, Photo #3), the gate

to the alley between the railroad tracks and the boiler house (Appendix A, Photo #4), and the gate

that accesses the north corner of the process building parking area (Appendix A, Photo #5) were not

secured. In addition, the doors to the office building and boiler house were not secured. OSC

Powers secured all access locations with padlocks upon the completion of the site assessment.

Signs of vandals and trespassers were evident in all areas of the site. At numerous locations inside

the office and process buildings, doors and windows were broken or pried open, and piles of stripped

wiring covered areas of the floors (Appendix A, Photo #6). Files, papers, and chemical bottles that

had been inside cabinets or drawers during the May 2002 site inspection were scattered about the

office building and upstairs laboratory (Appendix A, Photos #7 and 8). Likewise, the office furniture

I:\WO\START\32020S-3.WPD

309-2A-ACOJ

Section 3

Revision: 0
Date: 22 November 2002

Page: 2 of 7

was in disarray. Trash and debris in the boiler house such as clothing and hair products were also

evident (Appendix A, Photo #9).

The general condition of the on-site buildings and structures was poor. In particular, the roof and

walls of the process building and the windows and doors of the office building and boiler house have

lost structural integrity or were broken or crumbling. The failing rooftop of the process building may

have allowed rainwater to contribute to the pools of standing liquid (field test pH = 7) on the floor

near the scale pits. Various drums and totes were resting on the floor in this standing liquid.

Only a few of the on-site containers were labeled. One drum located in the process building was

labeled "Tergitol," which may be a detergent trade name (Appendix A, Photo #10); another drum

was labeled as hydrogen peroxide. Two drums outside the pump house were labeled as sodium

hypochlorite and an unknown oxidizer. A drum inside the office building was labeled as hexane and

had an operational hand pump installed at the top of it, offering easy access to the liquid contained

within the drum. A tote in the process building had a hand-written marking on it that read

"Microbator." Another tote in the area of the loading dock to the office building was labeled "Rec

Oil, flammable" (Appendix A, Photo #11). Approximately ten to fifteen 20-pound bags of a

substance that was labeled as "Amberlite" was being stored in the boiler house basement (Appendix

A, Photo #12). This appeared to be an absorbent substance. In addition, numerous compressed gas

cylinders were scattered throughout the office building and the basement of the boiler house

(Appendix A, Photos #13 and 14).

The general condition of on-site drums and containers was poor. Many metal drums were rusted and

had product crystals or residue surrounding the bung. Few of the drums had any markings or labels

(Appendix A, Photos #10, 15, 16, and 17). AST 19, a set of pumps in the basement of the process

building, and the caustic soda AST inside the process building had access valves that were also

encrusted with product crystals (Appendix A, Photos #18, 19 and 20). Likewise, many ASTs, such

as the clarifiers (ASTs 3, 4 and 5) and their access catwalks and enclosures, were heavily rusted.

I:\WO\START\32020S-3.WPD

309-2A-ACOJ

Section 3

Revision: 0

Date: 22 November 2002

Page: 3 of 7

However, ASTs 1 and 2 appeared to be in good condition, and the access stairways and railings were

solid, as was determined when investigation team mounted the stairways during tank sampling.

Many on-site secondary containment areas showed evidence of spills or releases from the original

containers or from the secondary containment itself. The secondary containment around the

clarifiers appeared to contain oily, discolored water (Appendix A, Photo #21), and staining of

adjacent cement was observed. A breach of this containment and subsequent staining of ground

outside of the containment wall was noted (Appendix A, Photo #22 and 23). Standing oily water

was also noted inside the containment areas of ASTs 1 and 2 (Appendix A, Photo #24).

Other unknown or potentially hazardous materials scattered about the site included the following:

• Unlabeled totes that were staged at the loading dock area near AST 5 (Appendix A.

Photos #11 and 25);

The scale pit in the process building that was filled with oil and sludge (Appendix A,

Photo #26);

Approximately 10 to 12 box and tanker trucks parked on-site with largely unknown

contents;

A derelict tanker truck that had leaked oil and was parked in the parking area

adjacent to ASTs 1 and 2 (Appendix A, Photo #27).

An inventory of waste oil on-site is provided in Table 3-1, and an inventory of potentially hazardous

waste other than waste oil is presented in Table 3-2.

Several areas on-site posed threats of spilled material that could migrate off-site:

Evidence of a historic oil spill was found between two tanker trucks in the on-site

parking area near a sewer manhole (Appendix A, Photo #28).

I:\WO\START\32020S-3.WPD 309-2A-ACOJ

Revision: 0
Date: 22 November 2002

Page: 4 of 7

- A sump in the floor of the pump house was clogged with oil (Appendix A, Photo #29), and a thick layer of oil covered the entire pump house floor.
- AST 19 did not have secondary containment. It contained a substance that filed tests confirmed was corrosive (SI-field screen-08, pH = 14) and was located close to a sewer manhole (Appendix A, Photo #30).
- The secondary containment surrounding the six totes that are located along the loading dock to the office building appeared to be insufficient as a past release was evidenced by dark staining on the driveway closest to the building. Releases from the secondary containment could migrate toward a nearby manhole (Appendix A, Photo #25).
- The secondary containment wall of AST 5 had a pipe protruding from the wall approximately 8 inches above the level of oily water in the containment. The nature of this pipe was unknown. It is also unknown if this pipe has acted as a pathway for the contained materials to migrate off-site (Appendix A, Photo #31).
- The ash pit located in the boiler house contained oil, oily water, and sludge. A higher liquid level was present at the time of U.S. EPA's and START's May 2002 site visit than was present at the time of the October 2002 site assessment (Appendix A, Photo #32). It is unknown how the liquid level in the ash pit diminished over time.
- In the alley between the doors to the boiler house and the railroad tracks, a manhole is located in a depression that contained shallow, standing water, possibly from a recent rain. The mechanism for drainage of this area is not known.

Air monitoring conducted on-site during the assessment indicated that organic vapors were limited to inside containers such as drums, totes, and tanks. Most of the site, both indoors and outdoors, is very well ventilated.

3.2 **SAMPLING ACTIVITIES**

During the site assessment, START collected six investigative used oil samples and one duplicate sample and seven investigative waste product samples and one duplicate sample. START also and conducted field screening at eight other locations. Tables 3-3 and 3-4 describe the samples taken and the field screening results for used oil and waste products, respectively. See drum logs and

I:\WO\\$TART\32020S-3.WPD 309-2A-ACOJ

Section 3 Revision: 0

Date: 22 November 2002

Page: 5 of 7

sample forms in Appendices B and C, respectively, for more details on samples, containers, and

conditions. Sample locations are shown on the facility map in Figure 3-1.

Before sampling began, U.S. EPA and START conducted a site reconnaissance to identify potential

sampling locations. At that time, a radiation survey and ambient air monitoring were conducted with

a Ludlum radiation probe and a MultiRAE five-gas analyzer, respectively. There were no ambient

air readings above background for volatile organic carbon (VOC), hydrogen sulfide, or carbon

monoxide vapors or the lower explosive limit (LEL). There were no readings above three times the

background level of radiation during the site reconnaissance. All buildings and sampling areas were

screened. Air monitoring continued throughout the sampling process to ensure that the appropriate

level of personal protective equipment (PPE) was used during sampling activities.

During the 22 October 2002 site activity, a total of seven used oil samples were collected for analysis

(SI-TOT-02, SI-TOT-02DP, SI-TA2-01, SI-TA2-02, SI-CLA-01, SI-ASH-01 AND SI-SCP-01), and

eight waste product samples were collected for analysis (SI-DRM-01, SI-TOT-01, SI-TOT-01DP,

SI-LAB-01, SI-LAB-02, SI-LAB-04, SI-LAB-05 and SI-TAC-01).

Following the site reconnaissance, START dressed in Level B PPE for unknown drum, tote, and

container sampling in the process building, the loading dock area, office building and laboratory

(Appendix A, Photo #33) (samples SI-TOT-02, SI-TOT-02DP, SI-DRM-01, SI-TOT-01, SI-TOT-

01DP, SI-LAB-01, SI-LAB-02, SI-LAB-04, SI-LAB-05 and SI-TAC-01). Drum thieves and scoops

were used for sampling or material from the source container was poured directly into the sampling

container. The sample of hexane from the 55-gallon drum on the first floor of the office building

was collected using the attached hand pump. All samples were labeled at the time of collection.

Modified Level D PPE was used to sample the on-site tanks, sumps, and pits (SI-TA2-01, SI-TA2-

02, SI-CLA-01, SI-ASH-01 AND SI-SCP-01). Samples from the scale pit, ash pit, clarifier, and the

surface layer oil in AST 2 were all collected using a dedicated dipping jar tied to a string. After the

I:\WO\START\32020S-3.WPD

309-2A-ACOJ

Section 3 Revision: 0

Date: 22 November 2002 Page: 6 of 7

sample was collected, it was transferred to a laboratory-prepared sample jar and labeled. The

subsurface sludge layer in AST 2 was sampled through the top access hatch using a clean 4-inch

bucket auger attached to 24 feet of extension rods. The sample depth was approximately 16 feet

below the liquid surface inside the tank. The sludge was not viscous enough to remain inside the

bucket head; however, enough sludge adhered to the sides of the bucket for a representative sample

to be collected.

Representatives of Darling International, a local rendering facility, were also on-site to sample AST

2, which was suspected of containing animal tallow at some depth below the surface liquid in the

tank. Mr. Don Muchow and Mr. Bill Fritz used a bomb sampler to grab subsurface material from

AST 2. This material was black and had a petroleum odor. There was no evidence of pure animal

tallow in the sample. Mr. Muchow and Mr. Fritz took the sample off-site for analysis and stated that

they would report their findings to the U.S. EPA.

3.3 ANALYSIS PLAN

All START used oil samples were collected in at least three containers: one 40-milliliter (mL) glass

jar for VOCs; one 40-mL glass jar for total halogens; and one 8-ounce glass jar for polychlorinated

biphenyl compounds (PCBs); semivolatile organic compounds (SVOCs), Resource Conservation

and Recovery Act (RCRA) list metals, flashpoint, and pH. Waste product samples were collected

in two containers: one 40-mL glass jar for VOCs by the Toxicity Characteristic Leaching Procedure

(TCLP) and one 8-ounce glass jar for TCLP PCBs, TCLP SVOCs, TCLP RCRA-list metals,

flashpoint, reactivity, and pH. Duplicate samples were collected on a schedule of 1 per 10 samples

per matrix; and matrix spike/matrix spike duplicate (MS/MSD) samples were collected 1 per 20

samples per matrix. Drum logs (Appendix B) and sampling forms (Appnendix C) were completed

during the investigation to record sampling activities and sample descriptions. Samplers donned

sterile nirtile gloves during sample handling, and the gloves were changed following each sample

I:\WO\START\32020S-3.WPD 309-2A-ACOJ

Section 3 Revision: 0

Date: 22 November 2002

Page: 7 of 7

collection. All sample jars were laboratory cleaned prior to sampling and had teflon-coated lids.

Samples were placed in an iced cooler as soon as possible after collection.

Samples collected for the total halogens analysis were sent by courier and under chain of custody to

CT & E Laboratories of Ludington, MI. START delivered samples for all other analyses, under

chain of custody, to Trace Analytical Laboratories, Inc., of Muskegon, MI.

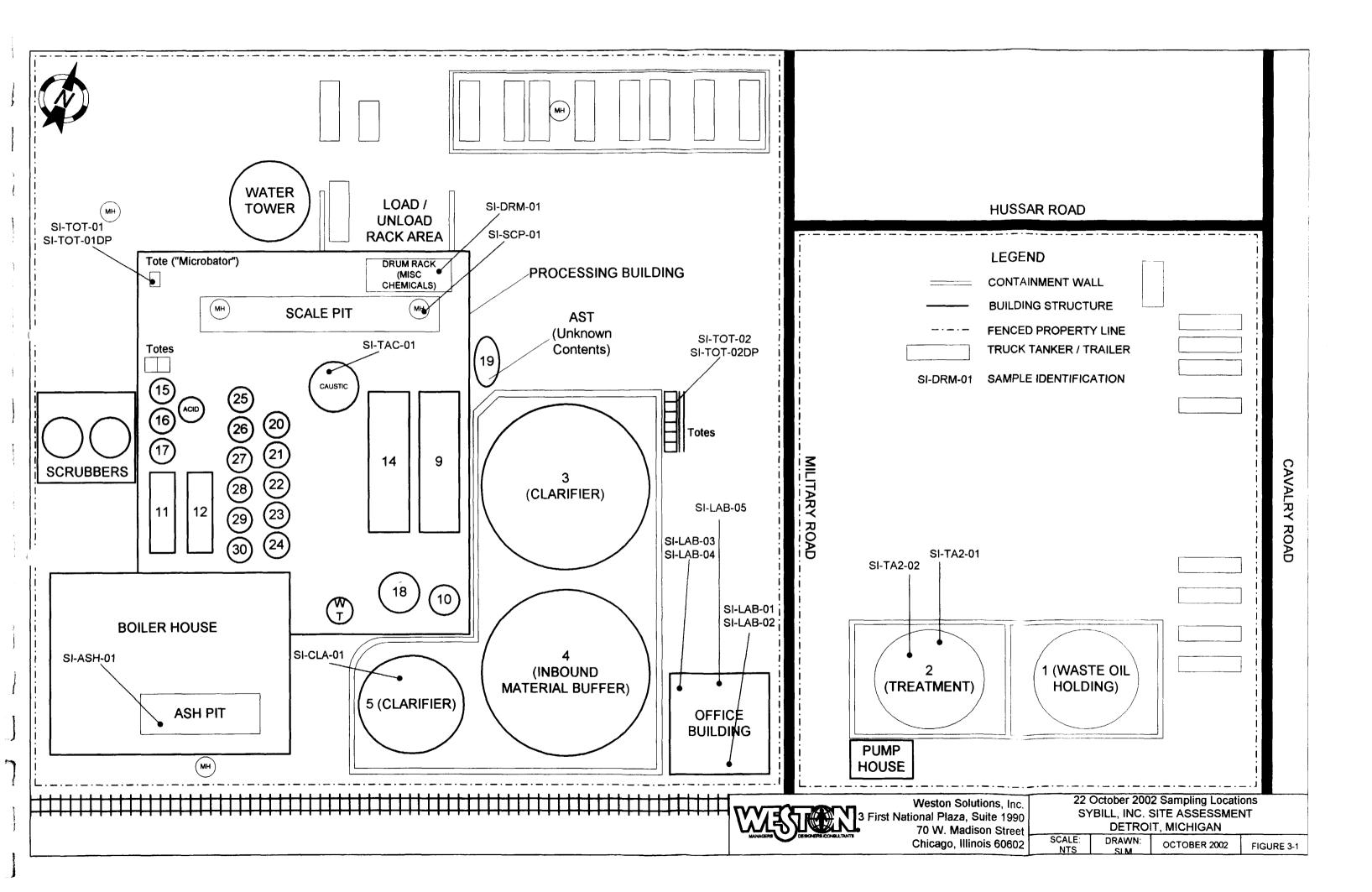
3.4 DECONTAMINATION PROCEDURES

All sampling gear START used was dedicated and disposable except for the bucket auger that was

used to sample the sludge layer of AST 2. All spent PPE and disposable sampling materials were

containerized in labeled, sealed plastic bags and stored in the locked process building. The bucket

auger was decontaminated after use with Alconox and deionized water. All cleaning effluent was


consolidated and containerized in a labeled 5-gallon pail. At the completion of the investigation,

the pail of decontamination liquid and garbage bags of contaminated debris were left on-site inside

the locked process building.

I:\WO\START\32020S-3.WPD

309-2A-ACOJ

Revision: 0
Date: 22 November 2002

Page: 1 of 1

Table 3-1: On Site Used Oil Inventory Sybill, Inc., Detroit, Michigan

Location	Waste Container	Waste Volume (gallons)*	Waste Description
AST1	250,000 gallon AST**	50,000	used oil and sludge
AST2	250,000 gallon AST**	200,000	used oil and sludge
AST3	350,000-gallon AST, clarifier**	50,000	used oil
AST4	350,000-gallon AST, clarifier**	50,000	used oil
AST5	180,000-gallon AST, clarifier**	50,000	used oil
ASTC	secondary containment, cement, ASTs 1, 2, 3, 4, 5	30,000	oily water
BOX	box trailer in NE parking area	10,000	oil, volume unknown, has leaked into parking area
BOX	box trailer in N parking of lot at PRB	10,000	oil, volume unknown, has leaked into parking area and nearby manhole
PUMP	cement floor of pumphouse	100	several inches of oily sludge
Appro	ximate Total Waste Oil and Oily Water on Site =	450,100	

^{*} Numbers of waste containers and waste volumes are estimated where necessary.

ASH = Ash Pit Area

AST# = Aboveground Storage Tank with identifying number

ASTC = AST Secondary Containment Area

BOIL = Boiler House

BOILB = Boiler House Basement

BOILB2 = Boiler House Sub-Basement

BOX = Box Trailer

CSC = Clarifier Secondary Containment Area

LAB = Office Building Upstairs Laboratory

OBFF = Office Building First Floor

OBUC = Office Building Upstairs Closet

PRB = Process Building

PUMP = Pump House

^{**} Tank volumes are estimated based on near capacity of AST 2 and estimate by EL that facility currently hold 400,000 gallons of used oil.

Section 3 Revision: 0

Date: 22 November 2002 Page: 1 of 1

Table 3-2: On Site Potentially Hazardous Waste Inventory Sybill, Inc., Detroit, Michigan

	Waste Container		Waste	
Location		Number*	Quantity*	Waste Description
ASH		6	330 gallons	35% hydrogen peroxide and unknowns
ASH		1	4000 gallons	ash pit at boilers containing oil, water and sludge
AST19		1	12,000 gallons	unknown, crystals with high pH value at access valve
BOIL	55-gallon metal drum	30	1,650 gallons	various unknown drums, including crystalized powder
BOX	55-gallon metal drum	50	2,750 gallons	box trailer contains approx. 50 drums with unknown contents
CSC		6	1,500 gallons	"Rec Oil" and other unknowns
	various plastic and glass, 250-mililiters to 2.5 liters	50	50 gallons	caustics, acids, metal standards, pH buffers, used oil samples and unknowns
OBFF	55-gallon metal drum	1	55 gallons	hexane
OBUC	5-gallon metal pail	10	50 gallons	acetone
OBUC	5-gallon metal pail	10	50 gallons	"carboline" rust inhibiting paint
OBUC	2.5-liter glass bottles	5	3 gallons	various liquid chemicals
OBUC		5	3 gallons	various solid chemicals
PRB	55-gallon drums in drum rack and on floor	20	1,100 gallons	"tergitol", hydrogen peroxide and unknowns
PRB	plastic totes	5	1,250 gallons	"microbator," and unkown liquids
PRB	AST	1	4,000 gallons	caustic soda
PRB	scale pit	1	4000 gallons	oil and water
PUMP	55-gallon metal drum	5	1,250 gallons	sodium hypochlorite and 35% hydrogen peroxide
	Approximate Total Drum Waste	on Site =	26,041 gallons	

	BOILB	metal gas cylinders	30	20 cylinders	propane, acetylene, and oxygen gas
ļ	OBFF	metal gas cylinders	8	8 cylinders	hydrogen, nitrogen and oxygen gas

~							
н	A	4 1 0	~ ~ .		A		cylinders
11	Approximate To	Massarama Hell	1 - 0 c / 3/	indore on '	€1fa =	/W /	ATTITUDE OF C
11	White are the second	mai Compiesseu	GAS CYL	maci 2 on i	311C - 1		r A II III A C I 2

BOILB2	20-pounds, plastic bags	20	400 pounds	"amberlite" resin
BOX	20-yard roll-off box	1		supsected to contain petroleum-contaminated soil
	Approximate Total Waste Solids	on Site =	30 tons	

^{*} numbers of waste containers and waste quantities are estimated where necessary

CSC = Clarifier Secondary Containment Area ASH = Ash Pit Area

AST# = Aboveground Storage Tank with identifying number LAB = Office Building Upstairs Laboratory

OBFF = Office Building First Floor ASTC = AST Secondary Containment Area BOIL = Boiler House

OBUC = Office Building Upstairs Closet

PRB = Process Building PUMP = Pump House

BOILB = Boiler House Basement BOILB2 = Boiler House Sub-Basement

BOX = Box Trailer

Revision: 0

Date: 22 November 2002 Page: 1 of 1

Table 3-3: Results of Field Screening of Used Oil Sybill, Inc., 22 October 2002

Sample ID	SI-TOT-02	SI-SCP-01	SI-TA2-01	SI-TA2-02	SI-CLA-01	SI-ASH-01
Sample Type	liquid	liquid	liquid	sludge	liquid	liquid
	tote of flammable	north access	250,000 gallon	AST#2		
Screening Location	"Rec Oil"at	manhole to scale	AST#2, top	subsurface		ash pit,
	loading dock	pit, process bldg	layer	sludge layer	AST#5/clarifier	boiler house
Field Observations	VOC = 10 ppm	none	nona	none	none	none
Field Observations	CO = 135 ppm	none	none	Hone	none	none

ppm = parts per million

% = per cent

VOC = volatile organic compounds

CO = carbon monoxide

Revision: 0

Date: 22 November 2002 Page: 1 of 3

Table 3-4: Results of Field Screening of Waste Products Sybill, Inc., 22 October 2002

Sample ID	SI-Field Screen-01	SI-DRM-01	SI-Field Screen-02	SI-Field Screen-03	SI-Field Screen-04	SI-Field Screen-05
Sample Type	liquid	wet crystals	liquid	liquid	liquid	liquid
Screening Location	drum in rack, process bldg	1	puddle of liquid on floor, process bldg		tote east of south door, process bldg	second tote east of south door, process bldg
Field Observations	pH = 7-8 VOC, CO, LEL, H2S = 0	pH = 7-8 VOC, LEL, H2S = 0 CO = 220	pH = 7	pH = 5	pH = 7-8	pH = 9-10

ppm = parts per million

% = per cent

VOC = volatile organic compounds

LEL = lower explosive limit

Revision: 0
Date: 22 November 2002

Page: 2 of 3

Table 3-4: Results of Field Screening of Waste Products Sybill, Inc., 22 October 2002

Sample ID	SI-TOT-01	SI-LAB-01	SI-LAB-02	SI-LAB-04	SI-Field Screen-06	SI-Field Screen-07	SI-LAB-05
Sample Type	liquid	liquid	liquid	liquid	liquid	liquid	liquid
Screening Location	tote of "microbator" in southwest corner of process bldg	5-gallon pail of "acetone," lab closet	5-gallon pail of "carboline," lab closet	2.5 liter jar of "nitric acid," lab	1 liter jar of "sodium hydroxide ion"	l liter jar of "microbator", lab	55-gallon drum of "hexane," office bldg
Field Observations	pH = 11	VOC = 2,000 ppm LEL = 19% CO, H2S = 0	VOC = 90 CO, LEL, H2S = 0	pH = 0-1	pH = 14	pH = 7	VOC = 778 ppm CO, LEL, H2S = 0

ppm = parts per million

% = per cent

VOC = volatile organic compounds

LEL = lower explosive limit

Sybill Inc. Site Site Assessment Report Section 3 Revision 0 Date: 22 November 2002 Page 3 of 3

Table 3-4: Results of Field Screening of Waste Products
Sybill, Inc., 22 October 2002

Sample ID	SI-TAC-01	SI-Field Screen-08		
Sample Type	crystals	crystals		
Screening Location	AST, approx 4000 gallons, "caustic soda," process bldg	AST 19, crystals accumulated at access valve		
Field Observations	none	pH = 14		

ppm = parts per million

% = per cent

VOC = volatile organic compounds

LEL = lower explosive limit

I:\WO\START\32020-SI-T3-4.XLS

Section 4 Revision: 0

Date: 22 November 2002

Page: 1 of 6

SECTION 4

ENVIRONMENTAL INVESTIGATION RESULTS

During site reconnaissance at Sybill, U.S. EPA chose specific locations for sampling. Sampling

locations were evaluated based on the type and amount of material present, the amount of organic

vapors detected inside the containers, and the condition of the container that held the material.

Observations made at sampling locations are summarized in Tables 3-3 and 3-4 and in Appendices

B, C, and D. Analytical parameter selections for each sample are outlined in Section 3.2. Analytical

results for these analyses were compared to a regulatory criteria levels and are presented in Tables

4-1 and 4-2 and in Appendix D. The characteristics of hazardous waste (40 Code of Federal

Regulations [CFR] 261.20-24) and the specifications for used oil (40 CFR 279.11) are presented as

comparison criteria.

4.1 <u>USED OIL ANALYTICAL RESULTS</u>

The waste oil or oil of unknown origin that was sampled on-site from tanks, totes, pits, or sumps was

considered to be used oil for the site assessment. Analytical results for the following samples are

discussed in this section: SI-TOT-02, SI-TOT-02DP, SI-TA2-01, SI-TA2-02, SI-CLA-01, SI-ASH-

01, and SI-SCP-01. All used oil analytical results are presented in Table 4-1.

4.1.1 Total Halogens in Used Oil

All results for total halogens in waste oil samples revealed concentrations that were above the

method detection limits. Results ranged from 80 micrograms per kilogram (ug/kg) to 4,043 ug/kg

total halogens with the following samples having the greatest concentrations:

I:\WO\START\32020S-4.WPD

309-2A-ACOJ

Section 4 Revision: 0

Date: 22 November 2002

Page: 2 of 6

SI-CLA-01 contained 4,043 ug/kg total halogens.

• SI-ASH-01 contained 1,804 ug/kg total halogens.

• SI-TA2-01 contained 1,278 ug/kg total halogens.

However, none of the samples had a concentration of total halogens exceeding the specifications for

used oil (4,000,000 ug/kg total halogens).

4.1.2 Metals in Used Oil

Five used oil samples collected during this investigation (SI-TA2-01, SI-TA2-02, SI-CLA-01, SI-

ASH-01, and SI-SCP-01) contained detectable levels of a total of seven different metals (Table 4-1).

Three used oil samples contained concentrations of metals that exceeded the specifications for used

oil:

• SI-TA2-01 contained 15 milligrams per kilogram (mg/kg) arsenic and 120 mg/kg

lead.

SI-TA2-02 contained 26 mg/kg arsenic and 35 mg/kg chromium.

SI-SCP-01 contained 35 mg/kg chromium.

The laboratory reported that due to the nature of the sample matrix, a smaller than usual sample

aliquot was used for some analyses. In other analyses, the elevated analyte concentrations made

sample dilution necessary. Both of these processes resulted in effectively raising the detection limit

for the affected analyses.

I:\WO\START\32020S-4.WPD

309-2A-ACOJ

Section 4 Revision: 0

Date: 22 November 2002

Page: 3 of 6

4.1.3 **VOCs in Used Oil**

Five used oil samples contained detectable levels of VOCs (SI-TOT-02, SI-TOT-02DP, SI-TA2-02,

SI-ASH-01, and SI-SCP-01). Five separate VOCs were detected in these samples (benzene, toluene,

ethyl benzene, total xylenes, and styrene). The greatest concentrations of these VOCs appeared in

the following samples:

• SI-TOT-02DP at 170,000 ug/kg styrene;

• SI-TOT-02 and SI-TOT-02DP at 130,000 ug/kg total xylenes; and

• SI-ASH-01 at 49,000 ug/kg toluene.

The laboratory reported that due to the nature of the sample matrix, a smaller than usual sample

aliquot was used for some analyses. In other analyses, the high analyte concentrations made sample

dilution necessary. Both of these processes resulted in effectively raising the detection limit for the

affected analyses. See Table 4-1 for details.

4.1.4 SVOCs in Used Oil

Two used oil samples contained detectable levels of SVOCs (SI-TOT-02 and SI-TOT-02DP). A

total of five different SVOCs were detected in these samples (naphthalene, 2-methylnaphthalene,

acenaphthalene, fluorene, and phananthrene). The SVOCs with the highest detected concentrations

in these samples included the following:

• 2-methylnaphthalene at 140,000 mg/kg (SI-TOT-02DP) and at 130,000 mg/kg (SI-

TOT-02); and

Naphthalene at 38,000 mg/kg (SI-TOT-02DP) and at 37,000 mg/kg (SI-TOT-02).

I:\WO\START\32020S-4.WPD

309-2A-ACOJ

Section 4 Revision: 0

Date: 22 November 2002

Page: 4 of 6

4.1.5 PCBs in Used Oil

None of the used oil samples contained levels of PCBs that were above the method detection level.

4.1.6 Characteristics of Hazardous Waste in Used Oil

Through analysis for flashpoint, it was determined that one used oil sample exceeded the criteria for

characteristic hazardous waste (SI-ASH-01, flashpoint of 70 degrees Fahrenheit [°F]). One other

sample, SI-SCP-01, had a flashpoint of 170 °F. All other used oil samples had flashpoints greater

than 200°F.

4.2 CHARACTERISTICS OF HAZARDOUS WASTE IN WASTE PRODUCTS

Waste products are defined here as all samples that were not obviously used oil. These samples

include all drum and laboratory container samples and the sample from the process building labeled

"Microbator." Analytical results for the following samples are discussed in this section: SI-DRM-

01, SI-TOT-01, SI-TOT-01DP, SI-LAB-01, SI-LAB-02, SI-LAB-04, SI-LAB-05, and SI-TA(01)

All waste product analytical results are presented in Table 4-2.

4.2.1 TCLP Metals in Waste Product Samples

None of the waste product samples contained levels of metals extracted by TCLP that were above

the method level of detection.

I:\WO\START\32020S-4.WPD

309-2A-ACOJ

Sybill, Inc. Site Site Assessment Report

Section 4 Revision: 0

Date: 22 November 2002

Page: 5 of 6

4.2.2 TCLP VOCs in Waste Product Samples

Samples SI-LAB-01, SI-LAB-02, and SI-LAB-05 contained levels of two VOCs extracted by TCLP

that were above the method level of detection. Levels of TCLP benzene exceeded the criteria for

characteristic hazardous waste in two of these samples (SI-LAB-01 and SI-LAB-05). Levels of

TCLP methyl ethyl ketone (MEK) exceeded the criteria for characteristic hazardous waste in one of

these samples (SI-LAB-01).

4.2.3 TCLP SVOCs in Waste Product Samples

None of the waste product samples contained levels of SVOCs extracted by TCLP that were above

the method level of detection.

4.2.4 TCLP PCBs in Waste Product Samples

None of the waste product samples contained levels of PCBs extracted by TCLP that were above the

method level of detection.

4.2.5 Other Characteristics of Hazardous Waste in Waste Product Samples

Through analysis for flashpoint and pH, it was determined that six waste product samples were equal

to or exceeded the criteria for characteristic hazardous waste and one sample that was determined

to be combustible:

I:\WO\START\32020S-4.WPD

309-2A-ACOJ

This document was prepared by Roy F. Weston, Inc., expressly for U.S. EPA. It shall not be released or disclosed in whole or in part without the express, written permission of U.S. EPA.

Sybill, Inc. Site Site Assessment Report Section 4 Revision: 0 Date: 22 November 2002 Page: 6 of 6

- Samples SI-TOT-01DP (140 °F), SI-LAB-01 (100 °F), SI-LAB-02 (95 °F) and SI-LAB-05 (75 °F) met or exceeded the characteristic criteria for hazardous waste by flashpoint.
- Samples SI-LAB-04 (pH=0) and SI-TAC-01 (pH=12.97) exceeded the criteria for characteristic hazardous waste by pH.
- The flashpoint of sample SI-SCP-01 (170 °F) did not meet the criteria for characteristic hazardous waste; however, it is sufficiently low to consider the substance combustible.

I:\WO\START\32020S-4.WPD 309-2A-ACOJ

Sybill Inc. Site Site Assessment Report Section 4 Revision: 0

Date: 22 November 2002 Page 1 of 1

Table 4-1: Analytical Results for Used Oil Samples Sybill, Inc. 22 October 2002

				Samı	ole Name (SI	-)			
An	alytical Parameter	SI-TOT-02	SI-TOT-02DP	SI-TA2-01	SI-TA2-02	SI-CLA-01	SI-ASH-01	SI-SCP-01	Criteria Level
	flashpoint (degrees F)	>200	>200	>200	>200	>200	70	170	<140°
Hazardous Waste	pH	6.69	6.9	4.59	6.41	4.38	6.08	7.96	数(<2, >12.5°
	benzene (ug/kg)	7,400	7000 J	6,000 U	530 U	750 U	910	700 U	NL
l	toluene (ug/kg)	26,000	28,000	6,000 U	3,500	750 U	49,000	700 U	NL
Total VOCs	ethyl benzene (ug/kg)	23,000	25000 J	6,000 U	960	750 U	5,400	890	NL
	xylenes (total) (ug/kg)	130,000	130,000	18,000 U	6,600	2,300 U	26,000	3,500	NL
	styrene (ug/kg)	160,000	170,000	6,000 U	530 U	750 U	550 U	700 U	NL
	naphthalene (mg/kg)	37,000	38,000	250 U	250 U	250 U	500 U	500 U	NL
	2-methylnaphthalene (mg/kg)	130,000	140,000	250 U	250 U	250 U	500 U	500 U	NL
Total SVOCs	acenaphthene (mg/kg)	3,600	3,700	250 U	500 U	250 U	500 U	500 U	NL
	fluorene (mg/kg)	1,700	1,700	250 U	500 U	250 U	500 U	500 U	NL
	phenanthrene (mg/kg)	1,300	1,300	25 U	50 U	25 U	50 U	50 U	NL
	arsenic (mg/kg)	0.2 U	0.2 U	15	***26":-	0.23	1.2	1.2	₹ - 5 ^b
	barium (mg/kg)	1.0 U	1.0 U	36	140	2.9	13	150	NL
	cadmium (mg/kg)	0.05 U	0.05 U	0.17	0.29	0.05 U	0.21	1.2	
Total Metals	chromium (mg/kg)	0.88 U	0.87 U	7.3	35 35 ₩	3	6.3	3-35₩	5. ∰10b
	lead (mg/kg)	1.0 U	1.0 U	-12	35	5.9	14	81	100 ^b
	silver (mg/kg)	0.5 U	0.5 U	0.5 U	0.85	0.5 U	0.5 U	0.5 U	NL
	mercury (mg/kg)	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2	NL
Total Halogens	(ug/kg)	80 J	277 J	1,278	461	4,043	1,804	728	3. 4,000,000 b

^{***}Results for analyses that had no results above the limits of detection are not presented in table.***

NA = not analyzed

U = result is below method detection limit

J = results are estimated

NL = not listed

10W0/START/32020-SI-T4-1 XLS 309-2A-ACOJ

^a Criteria are characteristics of hazardous waste as listed in 40 CFR 261.20-24

^b Criteria are specifications for used oil; oil with constituents not in exceedence of criteria levels shall not be subject to regulations of 40CFR 279.11 Sample results that are bold and highlighted have exceeded the criteria level for that contituent.

Site Assessment Rep of Section 4
Revise note 1
Date 22 November 2002
Page 1 of 1

Table 4-2: Analytical Results for Waste Product Samples Sybill, Inc. 22 October 2002

		Name								
Analytica	SI-DRM-01	SI-TOT-01	SI-TOT-01DP	SI-LAB-01	SI-LAB-02	SI-LAB-04	SI-LAB-05	SI-TAC-01	Criteria Level	
	flashpoint (degrees F)	>200	>200		##100 A	+105h2	NA	75	NA	<140°
Characteristics of	рН	4.8	6.54	7.38	3.88	4.05	041	4.01	≘12.97ੈੱ	<2, >12.5°
İ	TCLP benzene (mg/L)	100 UJ	1.0 U	5.0 UJ	1.21.	0.1 U	NA	1.1	NA	0.5ª
	TCLP MEK (mg/L)	500 UJ	5.0 U	25 U	2800 家	77	NA	5.0 U	NA	200ª

^{***}Results for analyses that had no results above the limits of detection are not presented in table.***

Sample results that are bold and highlighted have exceeded the criteria level for that contituent.

MEK = methyl ethyl ketone

NA = not analyzed

U = result is below method detection limit

J = results are estimated

NL = not listed

15WO/START\32020-SI-T4-2 XLS

^a Criteria are characteristics of hazardous waste as listed in 40DFR 261.20-24

Sybill, Inc. Site Site Assessment Report Section 5 Revision: 0 Date:22 November 2002 Page: 1 of 4

SECTION 5

THREATS TO HUMAN HEALTH AND THE ENVIRONMENT

Hazardous wastes and large volumes of used oil have been identified at Sybill. The following section presents a discussion of the threats to human health and the environment that can be attributed to each independent waste stream.

5.1 THREATS FROM OIL WASTE ON SITE

Conditions at Sybill, with respect to used oil, that warrant an appropriate removal action as set forth in paragraph (b)(2) of 40 CFR Part 300.415 of the National Oil and Hazardous Substances Contingency Plan (NCP) include the following:

• Actual or potential exposure of nearby human populations, animals, or the food chain from hazardous substances or pollutants or contaminants.

Field observations made during the site assessment indicate the presence of approximately 450,000 gallons of uncontrolled, used oil and oily sludge at the abandoned Sybill facility. The facility gates and AST access hatches and valves have been unlocked and are open thereby making the contents readily accessible to the nearby population. Site inspections have revealed that trespassers and vandals have routinely gained access to the facility. These persons could readily come into contact with the oils on site or remove oil from the site.

• Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers that may pose a threat of release.

The facility has five ASTs on the exterior of the buildings. The current combined volume of used oil in these ASTs is estimated to be approximately 400,000 gallons. Evidence of a recent release of petroleum materials was evident in the secondary containment for ASTs Nos. 1, 2, 3, 4, and 5. The on-site pump house contains both sludge and free oil. In addition, the on-site ASTs do not have locked valves, and there is unrestricted access to the top of the tanks.

The containment around ASTs Nos. 3, 4, and 5 is not continuous. There are pipes and breaks in the containment wall that could allow oil to be released from the

Sybill, Inc. Site Site Assessment Report Section 5 Revision: 0 Date:22 November 2002 Page: 4 of 4

 Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released.

The poor condition of building rooftops on site along with open windows and doors could allow rain or snow into the buildings that could accumulate as standing water. Many containers that may be storing hazardous materials are resting directly on the floors of the buildings where, if they were inundated with water, the container integrities could be compromised due to rusting or other wear. This may have already occurred inside the process building where a rusted drum and two totes were observed to be resting on the building floor in a large pool of water.

I:\WO\START\32020-SI-S5.WPD 309-2A-ACOJ

Sybill Inc. Site Site Assessment Report Section 6 Revision: 0 Date: 22 November 2002 Page: 1 of 5

SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 **CONCLUSION**

The Sybill site is located in a mixed industrial and residential area of Detroit, Wayne County, Michigan. The 15-acre site was most recently operated as a used oil processing facility until all facility operations permits were revoked and utility services were terminated in June 2001. Sybill management eventually filed for bankruptcy and abandoned the facility. While the facility was processing used oil, it was sited with various violations of environmental regulations. New estimates made during the site assessment indicate that approximately 450,000 gallons of used oil in addition to over 26,000 gallons of potentially hazardous wastes, compressed gases and contaminated soils are present on site. Evidence of on-site trespassing and vandalism are present.

START conducted a site assessment on 22 October 2002, and confirmed the presence of hazardous wastes on site in addition to large amounts of used oil and structural hazards. Based on the results of field screening and laboratory analysis of substances collected on site and according to 40 CFR Chapter 1 - 261.24, oil and waste liquids were collected that were flammable, corrosive or contained concentrations of benzene and MEK as determined by TCLP that exceeded the regulatory limits. In addition, oils that may be have hazardous substances mixed into them were also identified. Details of the sampling results are summarized in the following:

- Five samples, one each from a drum, a tote and an ash pit, and two from laboratory containers were determined to be hazardous waste by flashpoint analysis. The flashpoints of these material ranged from 70-140 °F, which meet or exceed the criteria for characteristic hazardous waste.
- In two samples from laboratory containers, the resulting concentrations of benzene and MEK after TCLP preparation of samples also exceeded the criteria for characteristic hazardous waste.

I/WO/START/32020-SI-S6.wpd 309-2A-ACOJ

Sybill Inc. Site Site Assessment Report Section 6 Revision: 0

Date: 22 November 2002 Page: 2 of 5

• An oil sample from the scale pit, had a flash point of 170 °F, indicating that the material was combustible.

- One sample from a laboratory container and one from a caustic soda AST were determined to be hazardous waste by corrosivity analysis. The pH values of these materials were zero and 12.97, which both exceed the criteria for a characteristic hazardous waste.
- One sample of oil from a tote on site was found to have elevated levels of VOCs and SVOCs which may indicate that it has been mixed with solvents.

Based on the completed site assessment, used oil being stored at Sybill poses a significant threat to human health as defined under 40 CFR §300.415(b)(2)(i)-(viii):

- 1. Actual or potential exposure of nearby human populations, animals, or the food chain from hazardous substances or pollutants or contaminants.
- 2. Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers that may pose a threat of release.
- 3. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released.

Based on the completed site assessment, potentially hazardous waste being stored at Sybill poses a significant threat to human health as defined under 40 CFR §300.415(b)(2)(i)-(viii):

- 1. Actual or potential exposure of nearby human populations, animals, or the food chain from hazardous substances or pollutants or contaminants.
- 2. Hazardous substances or pollutants or contaminants in drums, barrels, tanks, or other bulk storage containers that may pose a threat of release.
- 3. Weather conditions that may cause hazardous substances or pollutants or contaminants to migrate or be released.

E\WO\\$TART\32020-\$I-\$6.wpd 309-2A-ACOJ

Sybill Inc. Site Site Assessment Report

Section 6 Revision:0

Date: 22 November 2002 Page: 3 of 5

6.2 **RECOMMENDATIONS**

Based on the conclusions drawn from the information gathered during the Site Assessment and the

hazardous waste determinations made from the analytical results, START recommends the

following:

• The identified hazardous waste on site should be removed and disposed of at a

licensed hazardous waste disposal facility.

The large volume of used oil on site should be removed and recycled at a licensed

used oil treatment or blending facility.

Structural hazards on site should be demolished to eliminate potential harm to

trespassers as site security is an imminent issue.

Volume estimates for determining removal effort have been calculated for both oil and

potentially hazardous wastes on site. The results are presented below.

6.2.1 Estimated Volume of Oil Waste on Site

By definition in 33 United States Code (USC) 40 Subchapter I Section 2701, "oil" is considered

oil of any kind or in any form, including petroleum, fuel oil, sludge, oil refuse, and oil mixed

with wastes other than dredged spoil, but does not include any substance that is specifically listed

or designated as a hazardous substance under the Comprehensive Environmental Response,

Compensation, and Liability Act [(CERCLA), see below]. Table 3-1 of this report, On Site Used

Oil Inventory, presents an approximate volume of used oil currently contained on-site. Based on

available information about the nature and source of this material, there is approximately 450,000

gallons of "oil" area on-site, as defined above.

Oil of the nature described above is a potential candidate for cleanup and removal funding

through the Oil Pollution Act (OPA) and the Oil Spill Liability Trust Fund (OSLTF). Ultimately,

309-2A-ACOJ

Sybill Inc. Site Site Assessment Report Section 6 Revision:0

Date: 22 November 2002 Page: 4 of 5

the decision for funding through OPA is at the discretion of the USCG.

6.2.2 Estimated Volume of Potentially Hazardous Waste on Site

Hazardous waste is defined in 42 USC 103 Subchapter I Section 9601 as "any imminently hazardous chemical substance or mixture with respect to which the Administrator has taken action pursuant to Section 2606 of Title 15. The term does not include petroleum, including crude oil or any fraction thereof which is not otherwise specifically listed or designated as a hazardous substance...." Table 3-2 of this report, On-Site Potentially Hazardous Waste Inventory, presents the approximate volume of the total waste that may be hazardous and is currently contained on-site. Based on information gathered about the materials during recent site visits and analytical data for selected wastes, there is approximately 26,000 gallons of potentially hazardous waste in drums, totes, or containers; 30 tons of contaminated soil; and 28 compressed gas cylinders on-site.

It should be noted that the oily waste that was sampled from the ash pit in the boiler house (SI-ASH-01), although it appeared to be similar to oil or a petroleum product, was determined to be a characteristic hazardous waste by laboratory analysis; therefore, it is included in the volume estimate for on-site hazardous waste. Similarly, samples taken from a tote near the loading dock that was labeled "Rec Oil" (SI-TOT-02 and SI-TOT-02DP) had concentrations of VOCs and SVOCs that were markedly different from the samples collected from AST 2 (SI-TA2-01 and SI-TA2-02) and a clarifier (SI-CLA-01). Sample SI-SCP-01 is also included in this volume estimate because the sample was taken from waste oil of unknown origin inside the scale pit of the Process Building. This material was determined to be combustible by flashpoint analysis. In these cases, the oil-like materials in the "Rec Oil" tote and the scale pit are of unknown origin and may have an organic solvent mixed into them, thereby making the mixtures hazardous wastes.

Sybill Inc. Site Site Assessment Report Section 6 Revision:0 Date: 22 November 2002

Page: 5 of 5

Hazardous waste as described above is a potential candidate for cleanup and removal funding through CERCLA and Superfund.

IAWO\START\32020S-6.WPD 309-2A-ACOJ

Sybill Inc. Site Site Assessment Report Section: 7 Revision: 0 Date: 22 November 2002 Page: 1 of 1

SECTION 7

REFERENCES

- 40 Code of Federal Regulations (CFR) Part 261, Identification and listing of hazardous waste.
- 40 CFR Part 279.11, Specification for used oil.
- 40 CFR Part 300.415, The National Oil and Hazardous Substances Contingency Plan.
- 33 United States Code (USC) Part 40 subchapter I section 2701, Definition of oil.
- 42 USC Part 103 subchapter I section 9601, Definition of hazardous waste.
- Weston Inc., R. F. River Rouge Oil Spill, Dearborn, Michigan, April 2002, Site Inspection Report for Sybill, Inc., Detroit, Wayne County, Michigan, 2002.

APPENDIX A

Photo Log

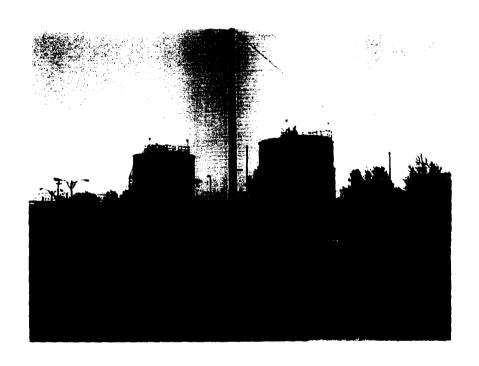

DATE: 10 May 2002

PHOTO NO: 1

DIRECTION: S

SUBJECT: A view of the Sybill main facility.

PHOTOGRAPHER: C. Green

SITE: Sybill, Inc.

DATE: 10 May 2002

PHOTO NO: 2

DIRECTION: NE

SUBJECT: A view of ASTs 1 and 2. Samples SI-TA2-01 and SI-TA2-02 collected from AST 1 (on the right).

PHOTOGRAPHER: C. Green

DATE: 22 October 2002

PHOTO NO: 3

DIRECTION: N

SUBJECT: A view of an open gate at the Pump House.

PHOTOGRAPHER: R. Moffett


SITE: Sybill, Inc.

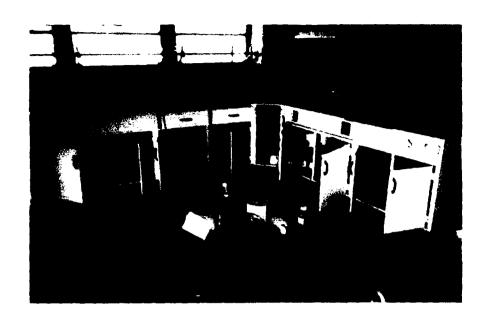
DATE: 22 October 2002

PHOTO NO: 4

DIRECTION: SE

SUBJECT: Ungated alley access to Boiler House.

SITE: Sybill, Inc. DATE: 13 May 2002

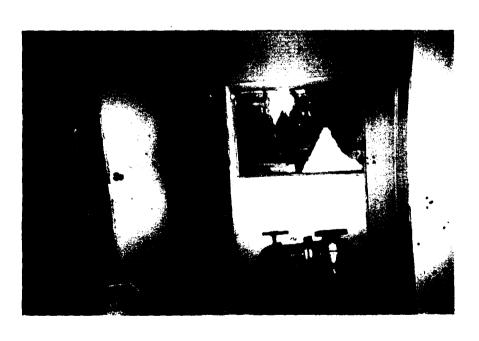

PHOTO NO: 5 DIRECTION: W SUBJECT: A view of an unsecured west gated entrance to

PHOTOGRAPHER: T. Borman

SITE: Sybill, Inc. DATE: 22 October 2002

PHOTO NO: 6 DIRECTION: Down SUBJECT: A view of stripped wires in the Office Building.

DATE: 22 October 2002


PHOTO NO: 7

DIRECTION: SW

PHOTOGRAPHER: R. Moffett

SUBJECT: A view of the vandalized laboratory. Sample SI-LAB-04 collected and SI-Field Screen-06, -07, and -08

conducted at this location.

SITE: Sybill, Inc.

DATE: 22 October 2002

PHOTO NO: 8

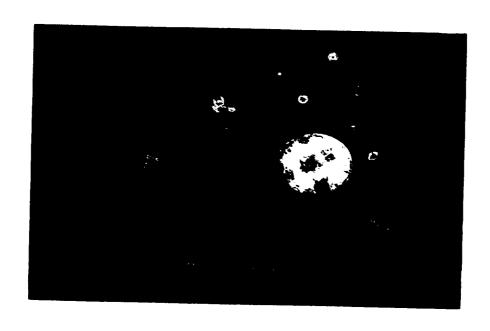
DIRECTION: SE

PHOTOGRAPHER: R. Moffett

SUBJECT: A view of the vandalized chemical storage closet, upstairs Office Building. Samples SI-LAB-01 and SI-

LAB-02 collected at this location.

DATE: 22 October 2002


PHOTO NO: 9

DIRECTION: SW

SUBJECT: A view of the debris due to vandalism in Boiler

House.

PHOTOGRAPHER: R. Moffett

SITE: Sybill, Inc.

PHOTO NO: 10

DIRECTION: NW

PHOTOGRAPHER: C. Green

DATE: 10 May 2002

SUBJECT: A view of drum rack in Process Building. Sample SI-DRM-01 collected and SI-Field Screen-01

conducted at this location.

SITE: Sybill, Inc. DATE: 22 October 2002


PHOTO NO: 11 DIRECTION: SW SUBJECT: A view of the tote of flammable "Rec Oil" at loading dock area. Samples SI-TOT-02 and SI-TOT-02DP

PHOTOGRAPHER: R. Moffett collected at this location.

SITE: Sybill, Inc. DATE: 22 October 2002

PHOTO NO: 12 DIRECTION: Down SUBJECT: A view of the Amberlite bags in Boiler House.

DATE: 22 October 2002

PHOTO NO: 13

DIRECTION: N

SUBJECT: A view of some compressed gas cylinders in the

Boiler House.

PHOTOGRAPHER: R. Moffett

SITE: Sybill, Inc.

DATE: 22 October 2002

PHOTO NO: 14

DIRECTION: NW

SUBJECT: A view of some oxygen and acetylene gas cylinders in the Boiler House.

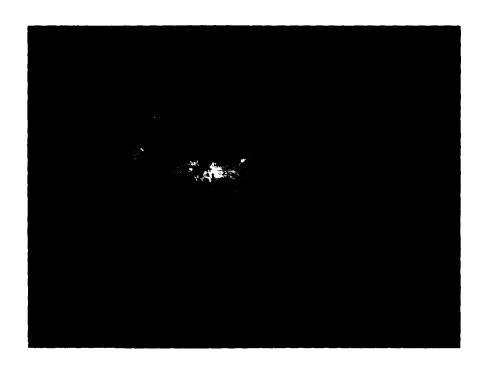



PHOTO NO: 15 DIRECTION: W

PHOTOGRAPHER: C. Green

DATE: 10 May 2002

SUBJECT: A view of drums of unknown contents in Boiler

House next to the Ash Pit.

SITE: Sybill, Inc.

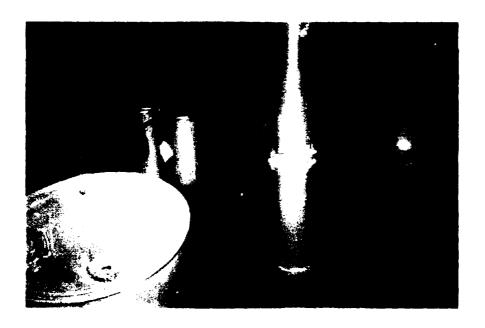

DATE: 22 October 2002

PHOTO NO: 16

DIRECTION: S

SUBJECT: A view of containers with unknown contents in

the Boiler House.

DATE: 22 October 2002

PHOTO NO: 17

DIRECTION: S

SUBJECT: A view of the drums of unknown contents in

the Boiler House.

PHOTOGRAPHER: R. Moffett

SITE: Sybill, Inc.

DATE: 22 October 2002

PHOTO NO: 18

DIRECTION: Down

SUBJECT: A view of the valve on AST 19 where SI-Field

Screen-08 was conducted.

DATE: 10 May 2002

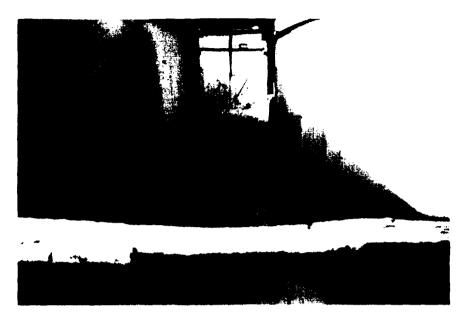
PHOTO NO: 19

DIRECTION: Down

SUBJECT: A view of encrusted pumps in the basement of

the Processing Building.

PHOTOGRAPHER: C. Green



SITE: Sybill, Inc.

DATE: 22 October 2002

PHOTO NO: 20

DIRECTION: Down **SUBJECT:** Another view of the corroded valve in AST 19.

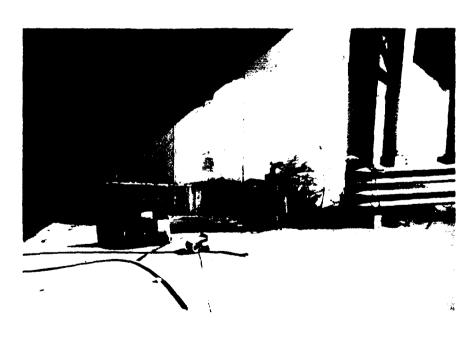

DATE: 22 October 2002

PHOTO NO: 21

DIRECTION: SW

SUBJECT: Oily water between ASTs 3 and 4.

PHOTOGRAPHER: R. Moffett

SITE: Sybill, Inc.

DATE: 22 October 2002

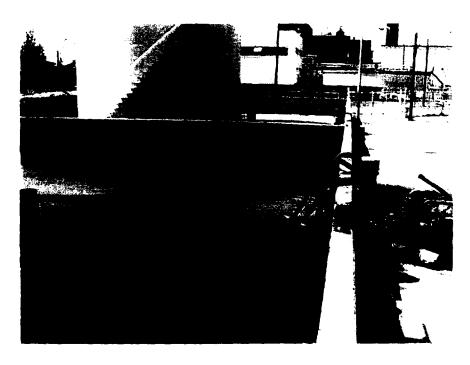
PHOTO NO: 22

DIRECTION: SE

SUBJECT: A view of the containment at AST 5, historic

staining visible in the foreground.

DATE: 22 October 2002


PHOTO NO: 23

DIRECTION: Down

SUBJECT: A view of the containment at AST 5, historic

staining is visible.

PHOTOGRAPHER: R. Moffett

SITE: Sybill, Inc.

DATE: 10 May 2002

PHOTO NO: 24

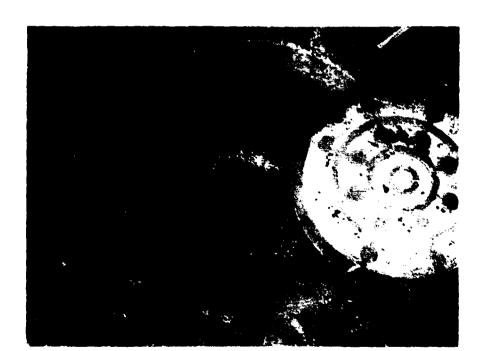
DIRECTION: SW

SUBJECT: A view of oil inside secondary containment

around AST 1.

PHOTOGRAPHER: C. Green

DATE: 22 October 2002


PHOTO NO: 25

PHOTOGRAPHER: R. Moffett

DIRECTION: S

SUBJECT: A view of the drainage around the tote

containment at loading dock.

SITE: Sybill, Inc.

DATE: 10 May 2002

PHOTO NO: 26

DIRECTION: Down

PHOTOGRAPHER: C. Green

SUBJECT: A view of the contents in the north access point of the scale pit in the Process Building. SI-SCP-01 collected at this location.

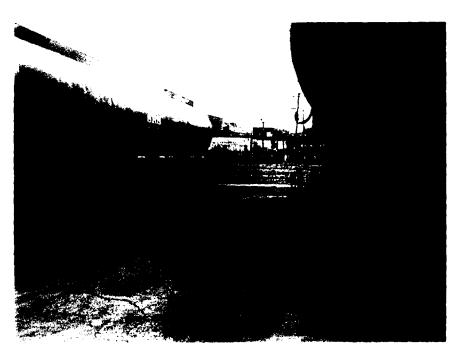

DATE: 10 May 2002

PHOTO NO: 27

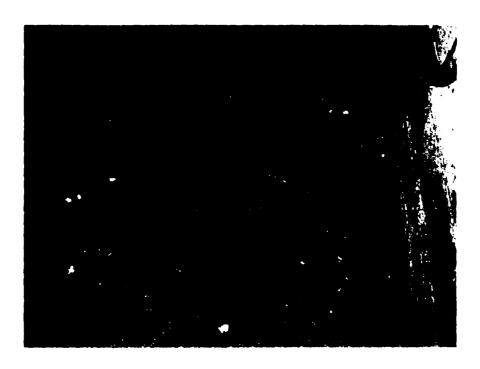
DIRECTION: N

SUBJECT: A view of oil released from the derelict tanker.

PHOTOGRAPHER: C. Green

SITE: Sybill, Inc.

DATE: 13 May 2002


PHOTO NO: 28

DIRECTION: W

SUBJECT: A view of historic staining beneath two tanker

trucks on the spill pad.

PHOTOGRAPHER: T. Borman

DATE: 13 May 2002

PHOTO NO: 29

DIRECTION:

SUBJECT: A view of a sump in the Pump House.

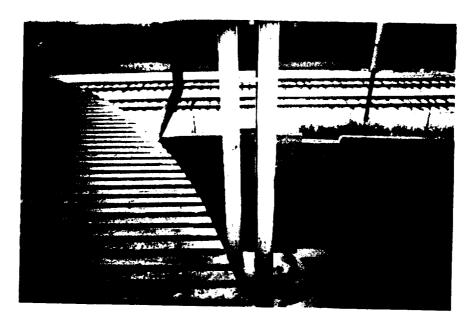
Down

PHOTOGRAPHER: T. Borman

SITE: Sybill, Inc.

DATE: 22 October 2002

PHOTO NO: 30


DIRECTION: SW

SUBJECT: A view of AST 19, no containment, sewer

nearby.

APPENDIX B

Drum Log

PHOTO NO: 31

DIRECTION: SE

PHOTOGRAPHER: R. Moffett

DATE: 22 October 2002

SUBJECT: A view a pipe protruding from the wall of the secondary containment at AST 5. Liquid level 8 to 10 inches below (barely visible, between uprights).

SITE: Sybill, Inc.

DATE: 10 May 2002

PHOTO NO: 32

DIRECTION: Down

SUBJECT: A view of the Ash Pit containing oil in the Boiler

House. SI-ASH-01 collected at this location.

PHOTOGRAPHER: C. Green

DATE: 22 October 2002

PHOTO NO: 33

DIRECTION: E

SUBJECT: START performing Level B sampling of unknowns in Process Building.

SITEINA	VIELSVIJINI	is, Sidas	sassmen(:			OFTUK TRIME	(N) (O) (N)				and the fight parameter of the same and the same parameter of the same and the same		
TDD:	S05-0209-	-005	<u></u>	Location PROCE	SS BUI	1LDN6		Container	NO:	SI- FIEL	D SCREE	N-01	
	Contai	ner Size				ner Type			C	ontainer (Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack		Metal Plastic Fiber	X	Glass Other			Notes: _{()/3}	Good Fair Poor Zuiu IN TOM K	X RACK, II	NIDDLE	of
Ring Lid Bung Pry Top Other	<u>×</u> ×	Tight Rusted Loose Off	X			r Markings		Container Contents			TED	- - -	layer 1 layer 2 layer 3
Full Empty	ontainer Co	ntents Amo	ount	Unknown Solid	ontainer C	ontents Sta Semi-solid		pН	7-8	Screenin -	ng Data		
Partial Unknown	<u> </u>		_%	Liquid Multiphase	X]		MultiRae uFID		0	02	LEL O	H2S
(Container S	ampling Da	ata					Comme	ents			'	
Date/Time Sample ID Sampler Method COC#	e Sampled)		SIREN HONE HIEF										
Loves	Havana	Water	рн	Oxidizer	lਜ਼√√ Sulfide	CATHINEO . Flamm	RMATION Chlorine		Chromate	Ammonio	Perovide	e arcente — e esta e e e	PCB
Layer	Hexane	Water	7-8	Oxidizer	Sullide	riainiin	Chlorine	Cyanide	Chromate	Ammonia	reloxide		FUB

SHE WAY	M= 2740[IIII	ne. Sie /S	. માણાંતકારો			eleinin 1877:	NTORY :							
TDD:	S05-0209	a service programme to the service of the service programme of the service of the		Location OR O	CESS BU	III NWG		Containe	NO:	SI- DRA	1-01			
	Conta	iner Size				ner Type			C	ontainer (Condition			
85-gallon 55-gallon 30-gallon	X.	5-gallon Other overpack		Metal Plastic Fiber	X	Glass Other				Good Fair Poor Rum IN KIGHT	X RACK.	707 R	.ow	
Ring Lid Bung Pry Top Other	Containe ×	Tight Rusted Loose Off	X	DANGE	SITOL N R: CAUS	er Markings P-/2 SEIBURN PAICLAS CO	.5 u	Container Contents		BLUE STICKY CLEAN	CRUSIAL	- ≨, -	layer 1 layer 2 layer 3	
Full Empty Partial Unknown	ontainer Co	ntents Am	ount _%	Unknown Solid Liquid Multiphase		Semi-solid		pH MultiRae uFID		Screenin CO	g Data	LEL O	H2S	
Date/Time Sample ID Sampler Method COC#			2 //:50 NE -01			DRUM	A RACK	Comments SI-DRM-01						
Layer	Hexane	Water	рН	Oxidizer	Sulfide	ZCAT INFO	RMATION: Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB	
			7-8											

SITEINAL	Alex, S ybil ini	ig, Sile As				oleania (saa	Nirory	j.					
TDD:	S05-0209	-005	AND	Location PROC	ESS BUIL	LDING		Container	r NO:	SI- FIEC	D SCRE	EN-0	2
	Contai	iner Size				ner Type			C	ontainer (Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack		Metal Plastic Fiber PUDI EAST of	DIE ON SOUTH	Glass Other FLOOP NEH IME DO	X or.		Notes:	Good Fair Poor]	
Ring Lid Rung Pry Top Other	Containe	Tight Rusted Loose Off			Containe	r Markings		Container Contents		CLEAR O	LQUIS V	- ¥17H -	layer 1 layer 2 layer 3
Co Full	ntainer Co	ntents Amo	ount	C Unknown	ontainer C	ontents Sta		рН	7	Screenin	g Data		
Empty Partial Unknown <i>PUDDLE</i>			<u></u> %	Solid Liquid Multiphase	X		.	MultiRae uFID	voc	co	02	LEL	H2S
C	ontainer S	ampling Da	ata					Comme	nts		-		
Date/Time Sample ID Sampler Method COC#		IU/IZ/UZ FIED S. MEY PH STI N A											
						(CANTINEO					- ·		
Layer	Hexane	Water	pH +	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
													

SARE NAMES S	7911 lio., 316/x	ingioisasi			BERUN IRM	-Nitorne i						
NAME AND POST OF THE OWNER OF THE PARTY OF T	-0209-005		Location	35 BUI	DING		Containe	r NO:	SI- FIE	W LREE	N-03	
	Container Size				iner Type			(Container	Condition		
85-gallon 55-gallon 30-gallon	5-gallon Other overpack		Metal Plastic Fiber	X	Glass Other			Notes: 1	Good Fair Poor KUM Si	X TANDING OF SOU	IN C	AR & E HICLE DOC
Ring Lid Rung Pry Top Other	Tight Rusted Loose Off	×		Containe	er Markings		Containe Contents	Color	RUST WATER	ED	- -	layer 1 layer 2 layer 3
Contair Full Empty Partial Unknown	Y (NO	ount	Unknown Solid Liquid Multiphase	*	Semi-solid		pH MultiRae	_5_voc	Screenin CO	O2	LEL	H2S
Conta	iner Sampling D	ata	•				uFID Comme					
Date/Time Sam Sample ID Sampler Method COC#	pled <u> 0/12/07</u> <u>Fig. 8</u> <u>0. (APO,</u> <u>p.H. STZ (</u> N. A	NE P										
			in sanganik anganing pangangangan a		ZOWINE							
ayer Hex	ane Water	рН <i>5</i>	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		РСВ
		+						···				

SITENAN	ME Sybillin	ig. Sile As	នទននាម្ចាច			जन्मः। शास्त्रका इत्यास	ENTORY F						
TDD:	S05-0209			Location	SS BUIL	DING		Containe	r NO:	SI- FIE	UN SCRE	EN-04	
	Contai	ner Size		Î		ner Type			C	Container	Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack	X	Metal Plastic Fiber	X	Glass Other			Notes: 7	Good Fair Poor	X THER FRO	om sout	TH WALL;
PLAST	TO TOTE			<u></u>				GAS 1	of SOU				
Ring Lid Rung Pry Top Other	Containe	Tight Rusted Loose Off			Containe	er Markings		Containe Contents		YEUW PLEAR	154/01E	- - -	layer 1 layer 2 layer 3
Co Full Empty Partial Unknown	ontainer Co	GO	ount _%	Unknown Solid Liquid Multiphase	X	Semi-solid		pH MultiRae uFID		Screenin CO	O2	LEL	H2S
C	ontainer S	ampling Da	ata	 			······································	Comme		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Date/Time Sample ID Sampler Method COC#		FIELD CAPE	12:06 SIREEN ONE PIP										
				and department and an	ĘĄ.	ZOANINEO	RMATION				and the grown of the second	Section 1	(J. 10)
Layer	Hexane	Water	рН - 7-8	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB

SITE NA	ME SMAILI	or electe	Tributake			etana kw	antory a		a de la companya de				
TDD:	S05-0209	a management of the company property		Location	iness i	BUILDING		Containe	r NO:	SI- FIET	O XHEG	V-05	
	Conta	iner Size				ner Type			C	ontainer	Condition		
85-gallon 55-gallon 30-gallon	TOTE	5-gallon Other overpack	X	Metal Plastic Fiber	×	Glass Other			Notes:	Good Fair Poor	X	}	
Ring Lid Bung Pry Top Other	Container Opening Ring Lid Tight Rusted Pry Top Loose Other Off Container Contents Amount				Containe	r Markings		Container Contents		YELLUM CLE	SH/CLET	£12 - -	layer 1 layer 2 layer 3
Full Full Empty Partial Unknown	ontainer Co	ntents Amo		O Unknown Solid Liquid Multiphase	\rightarrow	Semi-solid		pH MultiRae uFID		Screenin - CO	O2	LEL	H2S
}	Container Sampling Data Date/Time Sampled 10/22/02 /2:08 Sample ID Fitury Sutton Sampler A. C. APONE Method PH STRIP N. A.							Comme	nts				
						20 AV [N]-0							
Layer /	Hexane	Water	рН <i>9-10</i>	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
	1				[1	[[ĺ		1	

SITENA	ME Sybili∭		sessment			pletnik ikky	=NHYO)EAY 			in an artistic	man transition and the second to the second	Considerate by he a constant constant sides.	
TDD:	S05-0209	-005		Location PROCE	S Bull	D/N6		Containe	r NO: 、 ************************************	SI- דטד	-01		
	Conta	iner Size			Contai	ner Type			7 0	ontainer (Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack	X	Metal Plastic Fiber	X	Glass Other				Good Fair Poor J <i>Sourn</i> & BWL	X NEST (C	onver	OF
		r Opening			Containe	r Markings	,	1		-			
Ring Lid Bung Pry Top Other	X	Tight Rusted Loose Off	X	"MICR	OBATOR	١١		Container Contents		VELLOW!	SH /CLEP PR	? K. - -	layer 1 layer 2 layer 3
C	ontainer Co	ntents Am	ount	C	ontainer C	ontents St	ate			Screenin	g Data		
Full Empty Partial Unknown	X	90	_%	Unknown Solid Liquid Multiphase	×	Semi-solid		p⊦ MultiRae uFID		CO	02	LEL O	H2S
	Container S	ampling Da	ata	<u> </u>				Comme			<u> </u>	-	
Date/Time Sample II Sampler Method COC#	e Sampled)	O/22/02 SI-TOT-OI D CAPOI DRUM TH TRACE C	51-TOT-01. VE VEF	Þ				,					
					JE PA	20/AT NEC	RMATION			√			
Layer	Hexane	Water	рН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		РСВ
									ļ				
		 			 				 	 			
	1	<u> </u>	1]	1	1	1	† 	 	1		1	T

SHEIMME SHAILING, SIG GEOSEINENG	IDRAUM JAVAERARADIEM	
TDD: \$05-0209-005	Location SMITH EJGF, OF NOVEWAY TO	Container NO: St. S/- TOT-C2
Container Size	Container Type (PAOINS D	Container Condition
85-gallon 55-gallon Other 30-gallon overpack	Metal Glass Plastic Cher Fiber	Good Fair X Poor Notes:
Container Opening Ring Lid Rung Pry Top Other Container Opening Tight Container Opening Tight Container Opening	Container Markings "REC-OIL" FLAMMABLE	Container Color Contents Color CLEAR CLEAR Layer 1
Full Empty Partial Unknown	Container Contents State Unknown Semi-solid Solid Liquid X Multiphase	Screening Data PH VOC CO O2 LEL H2S MultiRae 10 135 0 O UFID VOC CO O2 LEL H2S O O O UFID UFID
Container Sampling Data Date/Time Sampled Sample ID Sampler Method COC# Date/Time Sampled SI-TOT-02 \$ SI-TOT-02 \(\text{P} \) SI-TOT-02 \$ SI-TOT-02 \(\text{P} \) THACE (K 248)		Comments
Layer Hexane Water pH	Oxidizer Sulfide Flamm Chlorine	Cyanide Chromate Ammonia Peroxide PCB

SITEMAN	. · · · · · · · · · · · · · · · · · · ·	nc.,Site As	sessment.			ALIGHA HANA	NTORY			s			e de la companya dela companya dela companya dela companya de la c
TDD:	S05-0209	-005		Location	MAIN BURS CLO	MUNG		Containe	NO:	SI- LAB	-01		
	Conta	iner Size				ner Type			C	ontainer (Condition	,	
85-gallon 55-gallon 30-gallon		5-gallon Other overpack	X	Metal Plastic Fiber	X	Glass Other			Notes:	Good Fair Poor	X		
Ring Lid Rung Pry Top Other	Containe	Tight Rusted Loose Off	×	Ace	Containe ET∂IVE	r Markings		Container Contents		BGACI I CEAI	۷	- - -	layer 1 layer 2 layer 3
Full Empty Partial Unknown	ntainer Co	ntents Amo	ount %	Unknown Solid Liquid Multiphase		ontents Sta Semi-solid		pH MultiRae uFID	voc <i>2000</i>	Screenin CO	g Data	LEL 19	H2S
	Container Sampling Data Tate/Time Sampled 10/22/02 13:05 Tample ID SI-CAB-0/ Tampler D. CAPONE Tethod PURING OC# CK 248 TRACE							Comme					
Layer	Hexane	Water	рН	Oxidizer	ਜ਼ਿ∕ੂਂ Sulfide	OAT NFO. Flamm	RMATION: Chlorine	Cyanide	Chromate	Ammonia	Peroxide	A Balance Agency of the Control of t	РСВ

SITEINAN	715 SM911111	io, Siie/As	sessinems.	4.		oraninary:	NEORY:	MAN (2.11)					
TDD:	S05-0209			Location	MAIN BL THRS 1	05		Container	NO:	SI- LAF	3-02		
	Conta	iner Size				ner Type			C	ontainer (Condition		·
85-gallon 55-gallon 30-gallon		5-gallon Other overpack	×	Metal Plastic Fiber	×	Glass Other			Notes:	Good Fair Poor	×	}	
Ring Lid Rung Pry Top Other	Containe	Tight Rusted Loose Off			BOUNE ARMO			Container Contents		RE STILKY _PAIN			layer 1 Jayer 2 l ayer 3
Full Empty Partial Unknown	ontainer Co	ntents Amo	ount	Unknown Solid Liquid Multiphase	×	ontents Sta		pH MultiRae uFID	voc 90	Screenin CO	g Data	LEL	H2S
-	Container S	ampling Da	ata					Comme		I	<u> </u>		
Date/Time Sample ID Sampler Method COC#	ampler <u>0. LAPONE</u> lethod <u>POUR</u>												
			in A. Carlotta and C. Carlotta		AHESSHA	3 6/±1 N F 0	RMATION			(VAS EE SAN)	one a		
Layer	Hexane	Water	рН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		РСВ
<u></u>	<u> </u>	<u> </u>	<u>l</u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	l	

SITE NAM	/IE: Sybill In	c., Site As	essment)RUN NAME	(170):N						
TDD:	S05-0209-			Location	JUHIN B			Container	NO:	SI- (AB	-63		
	Contai	ner Size				ner Type			С	ontainer C	Condition		
85-gallon 55-gallon 30-gallon	2	5-gallon Other overpack	<i></i>	Metal Plastic Fiber		Glass Other	X		Notes:	Good Fair Poor	×		
Ring Lid Rung Pry Top Other		r Opening Tight Rusted Loose Off	×		EXANE"			Container Contents			BER PAR	- - -	layer 1 layer 2 layer 3
Full Empty	ontainer Co	ntents Amo	ount	C Unknown Solid	ontainer C	ontents Sta Semi-solid		рН		Screenin	g Data		
Partial Unknown	×	50	% -	Liquid Multiphase	×			MultiRae uFID		CO	O2	LEL	H2S
(Container S	ampling Da	ita					Comme				<u> </u>	<u> </u>
Sample ID Sampler Method	e Sampled)	D. CAPO POUR	MITTED)										
COC#		NA.											
									Observation				IDOD
Layer	Hexane	Water	pН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
			 								<u> </u>		

						ર્તીસ્થાનન કરવ	- NICORY	.a-/3/01.5			201257 y	economical.	7
SITE NAM	is axaiiii	G., Site/As	sessment.			Marian							**
TDD:	S05-0209-0	005		Location	MAIN BU	06		Container	NO:	SI- LAB	-04		
 	Contair	ner Size		OF	<i>STHIRS</i> Contain	<i>CH6</i> ner Type		 	С	ontainer (Condition		
		•				_		_	_			_	
85-gallon		5-gallon	ļ	Metal		Glass	X	4		Good		1	
55-gallon 30-gallon		Other overpack	X	Plastic Fiber	<u> </u>	Other	<u> </u>	4		Fair Poor		ł	
30-gailori		·	L	ribei	L	j		[Notes:	P001	L	j	
		5 L						1					
	Containe	r Opening		η		r Markings	5	Containe	Color	1	~ ~		
Ring Lid	Γ	Tight		 ^	ITPIC AC	/Δ -		Contents		BURHT	91< YELUW	-	layer 1
Rung		Rusted		1				1		DEIGIT	1. Clarki	-	layer 2
Pry Top		Loose						1				_	layer 3
Other	X	Off						4					
Co	ntainer Cor	itents Ame	ount		Container C	ontents S	ate	-		Screenin	g Data		
Full				Unknown		Semi-soli		pН	0-1		3		
Empty				Solid]		7		-			
Partial	X	(10	_ %	Liquid	X	4			voc	СО	02	LEL	H2S
Unknown	L			Multiphas	e	J		MultiRae uFID			 	ļ	
C	ontainer Sa	ampling Da	ata					Comme		L	<u> </u>	<u> </u>	
((, -											~_
Date/Time Sample ID		10/72/12 SI-LAG		MAT	GRIALS 1, BINKTS	N LAB	HAVE)	35EN M	PENED 1	9ND 1	HIVED	all c	7 <u>_</u>
Sampler		D. CAR	ONE.	1 CH	131 NETS	ONTO	FLUOR	AND	CCUNTER	7015	S. CB	100U	sch
Method		POUR		TAY	UPERES	WITH.							
COC#	(<u>Cr 248</u>	TRACE	ł									
745000000					The State	aoan Ing	RMATION		213		en nede in	r wee	Wat r.
Layer	Hexane	Water	рН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
			1-1	ļ	 	 							
 	-		 		 	 	+	 		 	 	 	
<u> </u>	 		 	 	 	 	 		 	 			

SITE NAM	lE: Sybili Inc	Site Ass	essinan _e		Part of the second	RIMA TRIME					- E		
TDD:	S05-0209-0			Location	NAMN BLO	06		Container	NO:	SI-FIELI	SLEE	N-06	7
	Contain	er Size		U	<i>PSTALRS</i> Contain	<i>LPR</i> ner Type			C	ontainer C	Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack		Metal Plastic Fiber		Glass Other	×		Notes:	Good Fair Poor	X		
Ring Lid Rung Pry Top Other		Tight Rusted Loose Off		",S0/)i	Container ⊔A1 HYD	r Markings LOXIDE		Container Contents			LEAR EAR	-	layer 1 layer 2 layer 3
Co Full Empty Partial Unknown	entainer Con	tents Amo	ount	Unknown Solid Liquid Multiphase	Container Co	o ntents St a Semi-solid		pH MultiRae uFID	voc	Screenin		LEL	H2S
С	Container Sa	ımpling Da	ata				<u></u>	Comme		<u> </u>	l	<u> </u>	<u> </u>
Date/Time Sample ID Sampler Method COC#	•	D AMOS	1346 XKEEN NEW J.KIM RIP	BLE									
\6\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							RMATION						
Layer	Hexane	Water	pH 14	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
			 										

SINE WAY	de syallih	ে, প্রাক্ত প্র	्रमाधार्थक्र स्थान			DW WAF	RHTORNES						Mary To the
TDD:	S05-0209-	005			MAIN B IPSTAIRS			Container			LD SCRE		
	Contai	ner Size			Contai	ner Type			Ċ	ontainer (Condition		
85-gallon 55-gallon 30-gallon	~	5-gallon Other overpack	X	Metal Plastic Fiber	X	Glass Other			Notes:	Good Fair Poor	X		
Ring Lid Rung Pry Top Other	Containe	Tight Rusted Loose Off	<u> </u>	"MI	Containe	r Markings OR ``		Container Contents			HR AR	-	layer 1 layer 2 layer 3
Full Full Empty Partial Unknown	ontainer Co	ntents Amo	ount %	Unknown Solid Liquid Multiphase	Container C	ontents Sta Semi-solid		pH MultiRae uFID	voc	Screenin CO	O2	LEL	H2S
	Container Sampling Data Pate/Time Sampled							Comme	nts				
	· · · · · · · · · · · · · · · · · · ·			IOWW:		THE PARTY OF THE P	RMATION)		Chromate	Control of the second s	Porovido	SECOND VI	РСВ
Layer	Hexane	Water	pH 7	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	reloxide		FUB

SITE NAM	NE: Sybill li	nc., Site As	sessment);}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Nh(e)RY						
TDD:	S05-0209		-	Location	MAIN BUD	9	DOR W SIDE	Container	NO:	SI- LAB	- 05		
	Conta	ner Size	· · · · ·	INSIDE Y		ner Type	MR N SILC		C	ontainer (Condition		
85-gallon 55-gallon 30-gallon	X	5-gallon Other overpack		Metal Plastic Fiber		Glass Other			Notes: Pun	Good Fair Poor	DISPENSIA	JG MA	TERIAC
	Contain	er Opening	· · · · · · · · · · · · · · · · · · ·		Containe	r Markings			AT	TACHES	10 DRU	W)	
Ring Lid Rung Pry Top Other	ry Top Rusted Loose Off Container Contents Amount				EXANE''			Container Contents		BLAC CLE		- - -	layer 1 layer 2 layer 3
Full Empty Partial Unknown	<u> </u>	ntents Amo	ount %	C Unknown Solid Liquid Multiphase	×	ontents Sta Semi-solid		pH MultiRae uFID	voc 778	Screenir CO		LEL 0	H2S
(Container S	ampling Da	ata					Comme		<u></u>	<u></u>		<u></u>
Date/Time Sample ID Sampler Method COC#	J. LIMBLE/S MAYMethodHAND PUMPCOC#OK ZYE TEACE							ORUM F 7D SA					
1470 BLG				tania information									
Layer	Hexane	Water	pH	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
												<u> </u>	

Shife Mender (Smedici)	ie, sile as	કલકંકાળણાંદ			OBTOWN 1870	#\\\(\(\mathreal\)						
TDD: \$05-0209	-005				BUILDING TO SCALE		Container	NO:	SI- FIEL SC/	<u>> 5€R€€</u> 2-01	\	
Conta	iner Size				ner Type			C	ontainer (
85-gailon 55-gallon 30-gallon MOR SUM			Metal Plastic Fiber WOS2 STEEL		Glass Other			Notes: (Good Fair Poor INKNOW	W, UNL	CR GR	auND
Ring Lid Rung Pry Top Other SEVER UI)	Rung Rusted Pry Top Loose Other Off Sover U/\(\) Container Contents Amount				r Markings		Container Contents		ELACK,	ENT O/LY WA	- HGR - -	layer 1 layer 2 layer 3
Full Empty Partial Unknown	entents Am	ount _%	O Unknown Solid Liquid Multiphase	X	Semi-solid		pH MultiRae uFID	voc	Screenin	O2	LEL	H2S
Container S Date/Time Sampled Sample ID Sampler Method COC#	O/22/02 SI-501- L-MOR JAR DII CK248	<u> 4:30</u> 01 FETT	DECAN IN C	ITEI AS SAMPLE	з мисн	WATCK	Comme		E FRO	en OIL		
Layer Hexane	Water	рН	Oxidizer	jā/a∕ Sulfide	ZGAT NFO Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		РСВ

•

SITENAL	Ma Sydilur	io, Siglas				DEGLIK KAME							
TDD:	S05-0209			Location	AST #2 MILITHR	L, NORTH	1 SIDE	Container	· NO:	SI- FIEL	D 50R(C) 2 -01	Non	
	Contai	ner Size	······································			ner Type			C	ontainer (Condition		
85-gallon 55-gallon 30-gallon 250,		5-gallon Other overpack	X	Metal Plastic Fiber	<u>×</u>	Glass Other	Lsin		Notes:	Good Fair Poor	X] 	
Ring Lid Rung Pry Top Other	+ HATOH	Tight Rusted Loose Off	×			r Markings		Container Contents			E	- - -	layer 1 layer 2 layer 3
Full	ontainer Co	ntents Am	ount	C Unknown	ontainer C	ontents Sta Semi-solid		рН		Screenin	g Data		
Empty Partial Unknown	X	98 (~ lo foet Surfa	% ito (ail)	Solid Liquid Multiphase	X			MultiRae uFID		co	02	LEL	H2S
	Container S		شين كالناس					Comme	nts				
Date/Time Sample ID Sampler Method COC#	e Sampled	10/22/02 SI-TA2 S. MEYE VAR DI CK 248	-01 R										
8	- Andrews	<u> Andrian de la companya de la compa</u>				CONTRACTO							
Layer	Hexane	Water	рН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
	-				<u> </u>								

in the state of t

Shit was	ME Smoller	i6 a. Filip /82	sessingife			otstuk 18Mi						A	22
TDD:	S05-0209	-005			AST #2, ILLI MAKY	, NORTH RD	SIDE OF	Containe	NO:	SI- <u>E151</u>	D SCREE	10-8m	
Container Size				Container Type						ontainer (
85-gallon 55-gallon 30-gallon		5-gallon Other overpack <i>GHW</i> N	X	Metal Plastic Fiber	X	Glass Other			Notes:	Good Fair Poor	X]	
Ring Lid Rung Pry Top Other	X	Tight Rusted Loose Off	X			er Markings		Container Contents			. 01cy	-	layer 1 layer 2 layer 3
Full	ontainer Co	ntents Am	ount	Unknown	Container C	Semi-solid		рН		Screenin	g Data		
Empty Partial Unknown	X	98	_%	Solid Liquid Multiphas	X	SLUIGE		MultiRae uFID	voc	co	02	LEL	H2S
	Container S	ampling D	ata				<u> </u>	Comme				*	
Date/Time Sample ID Sampler Method COC#	•	10/22/02 51-172 5. MGH BULYET CK 248	-02 B	7 364 364 70	W HATO	AUPLED CH. C PLE WAS T AND	IQUID/	schoße En Fæ	AUSER DIB CM (21	TO AI NOT - HIERIA	PPROX STAY L TH	22 IN B AT C	FEET UCKET CLUNG
		ki kila 10 - ako sakaray osa samo saka ya				76/A: 181-0							223
Layer	Hexane	Water	рН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
	 			 	 	<u> </u>						<u> </u>	
L	<u> </u>	<u> </u>	<u> L</u>	<u> </u>		<u> </u>	<u> </u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u> </u>	<u> </u>

SITEMAN	ME Sybillin	6, Sie Au	essment.							Cara de Alexandro de Cara de C	capath aftir dissenses in the concentration	and the operation of management	and the same of
TDD:	S05-0209-	005	· New Court ·	Location AHCH	CONTAIN.	ED CLAN SED CU	CIFIER HUFIEC	Container	NO:	SI- FIE	SCREE,	zen	
	Contai	ner Size				ner Type	#5		C	ontainer (Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack		Metal Plastic Fiber	X	Glass Other			Notes: 6	Good Fair Poor	X D ENCL	esiuke	
 	AST, CLA	KIFIER or Opening		<u> </u>	Contains	. 14 - 11			DETER	IURATES	SEVE	esukt REVY	
Ring Lid Rung Pry Top Other	OPEN T	Tight Rusted Loose Off				r Markings		Container Contents			016	- - -	layer 1 layer 2 layer 3
Full	ontainer Co	ntents Amo	ount	C Unknown	ontainer C	ontents Sta Semi-solid		рН		Screenin	ng Data		
Empty Partial Unknown	X	40	_%	Solid Liquid Multiphase	X	Scann-Solid		MultiRae uFID	voc	co	O2	LEL	H2S
	Container S	ampling Da	ita					Comme	nts	***************************************		<u> </u>	
Date/Time Sample ID Sampler Method COC#		1972/02 51-CLA- K. NOFF DIP JAN CK 246	OI ETT										
*						CAN NEO					15	matterna or conserve an except	LDGB
Layer	Hexane	Water	рН	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB
	 												

SIFE RVAV	(Et 'Syledi II	16. Hi te /45))(eme <u>so</u> e			वर्गात विशेषः	(N+(O)+(N)						
TDD:	S05-0209	-005	**************************************	Location (M16E	PROCESS &	SULDING CAUST(NEAR	Container	NO:	SI- F/51 7AC	1 - SCRCC.	New	
	Conta	ner Size				ner Type ${\cal S}$			С	ontainer (
85-gallon 55-gallon 30-gallon AST	~ 4000		X	Metal Plastic Fiber		Glass Other			Notes:	Good Fair Poor	义]	
	+ VALVE	Tight Rusted Loose Off	X		CAUSTIC			Container Contents		<u>WH17</u> <u>-WH17</u> 	E	-	layer 1 layer 2 layer 3
Full Empty Partial Unknown	ntainer Co	ntents Amo	ount **	Unknown Solid Liquid Multiphase	X	ontents Sta Semi-solid		pH MultiRae uFID	voc	Screenin CO	O2	LEL	H2S
Date/Time Sample ID Sampler Method COC#	Sampled	ampling Da 10/22/02 SI - TAC - S. MEYE SCOOP CK 248	/030 01 R	CKYS WE	THIS OF RE SCR	PRODUCT PAPED I	- GATHEI WTO JK	Comme KGI AT FOR	PIPE O	PENING ANACY	. THOS	BE Y LA	3
	Hexane	Water	рН	Oxidizer	Sulfide	ZOZANINEO. Flamm	RMATIONA Chlorine	Cyanide	Chromate	Ammonio	Porovido		PCB
Layer	I ICAGIIC	vvalei	PΓ	OXIGIZEI	Juliue	i idiiiii	Ontoline	уатис	Omornate	, williona	CONICE		. 05

SITEMAN	us Sybilud	ig Sic/s			1	TENNY TANA	NITORY						
TDD:	S05-0209-			Location	BOILER ASH			Containe	NO:	SI- FIFE	S SCREE , H O I	ws an	
	Contai	ner Size				ner Type	··· ·	 	C	حربر ontainer (Condition		
85-gallon 55-gallon 30-gallon		5-gallon Other overpack	X	Metal Plastic Fiber		Glass Other			Notes:	Good Fair Poor	×]	
Ring Lid Rung Pry Top Other	Containe	Tight Rusted Loose Off			Containe	r Markings		Container Contents		C/AUE BLACK	NT OIL	-	layer 1 layer 2 layer 3
Co Full Empty Partial Unknown	ntainer Co	ntents Amo	ount %	C Unknown Solid Liquid Multiphase	X	ontents Sta Semi-solid + SLUBÇ		pH MultiRae uFID	voc	Screenin CO	O2	LEL	H2S
Container Sampling Data Date/Time Sampled /0/22/02 /(p:45 Sample ID Sampler R. MOFFETT Method DIF JAR CK 248 TRACE							Comme						
		and the state of t				CAMBINEO					e anno e la compania de la compania		
Layer	Hexane	Water	pH	Oxidizer	Sulfide	Flamm	Chlorine	Cyanide	Chromate	Ammonia	Peroxide		PCB

STERM	is symbo, sick	erosaman:			SELLIN TRIVE	\$\\\\\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				majorita jaja sa ta majorita sa		
TDD:	S05-0209-005				N WA		Containe	NO:	SI-FIE	D SCREE	N-08)
	Container Size				ner Type				ontainer	Condition		
85-gallon 55-gallon 30-gallon	5-gallon Other overpack	(**	Metal Plastic Fiber	X	Glass Other			Notes: /	Good Fair Poor	8 BEED	" Ses	19"
Ring Lid Rung Pry Top Other	Tight Rusted Loose Off	g 7	" <	Containe	er Markings		Container Contents		_WH1 T WKNOO	TE WN	-	layer 1 layer 2 layer 3
Co Full Empty Partial Unknown	ntainer Contents An	nount	Unknown Solid Liquid Multiphase	∀	contents Sta Semi-solid		pH MultiRae uFID		Screenin	O2	LEL	H2S
С	ontainer Sampling [Data					Comme	nts	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	_
Date/Time Sample ID Sampler Method COC#	S. 146	MLY	-	ALLE	E) CRY. SS VA LVED IN F PH	IVE TO NUN	D TAN IMAZ	HVE C IK . C DEION	INLECT PYSTA 117ED	ED A US WATE	47 R 70	5
Layer	Hexane Water	рН	Oxidizer	ដូ <u>ង</u> Sulfide	Z @AT INF @ Flamm	RMATION: Chlorine		Chromate	Ammonia	Peroxide		РСВ
	- Transition of the state of th	14										
									<u> </u>			

.

APPENDIX C

Sampling Forms

Sample Name (e.g. SI-DR, 1A, SP or APUI-UI)	: 21-DKM-01
QA/QC (circle): field sample d	luplicate MS/MSD
<u>Date:</u> 10/22/02	
<u>Time:</u> 1150	
Location of Sample: PROCESS BLOG,	DRUM RACK, BLUE DRUM
Type of Sample (circle): Grab	Composite
Sample Matrix (circle): Oil Wastewater Product Drum Solids Other	% Oil = Composition = Composition = SOLID, CRYSTACS Composition =
Parameters sampled for:	
Oil VOCsTotal HalogensPCBs/VOCsRCRA metalsFlashpoint/pH	DRUM RACK 31- DRM-01
Aqueous Samples 7-8 pH (field test result) TCLP VOCs TCLP PCBs/VOCs TCLP RCRA metals Flashpoint/pH/Reactivity	(0=220ppm (MultiRAE)
Drum SolidsTCLP VOCsTCLP PCBs/VOCsTCLP RCRA metalsFlashpoint/pH/Reactivity	MTERGITOL NP-12" PHNGEZ: CAUSES EYE BURNS

Sample Name (e.g. SI-DR	<u>, TA, SP or AP01-0</u>	<u>n):</u> 51-70	11-01	
QA/QC (circle):	field sample	duplicate	MS/MSD	
Date: 10/22/02				
<u>Time:</u> 1215				
Location of Sample: 5	ountwest co	TRNER OF	Process BLDG	, rore
Type of Sample (circle):	Grab	Composite		
Sample Matrix (circle):	Oil Wastewater Product Drum Solids Other	Co Co	Oil = mposition = mposition = mposition =	
Parameters sampled for:				
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH		(ABELED	"MICROBATOIZ	
Aqueous Samples / PROCE	t) s ls			
Drum SolidsTCLP VOCsTCLP PCBs/VOCsTCLP RCRA metaFlashpoint/pH/Rea	ls			

<u>Sampie Nan</u>	ne (e.g. 51-DK,	IA, SP OF APU	<u>r-011:</u> >1-10) I - O I BP
QA/QC (cir	cle):	field sample	duplicate	MS/MSD
<u>Date:</u> /0/	122/02			
<u>Time:</u> /2	15			
Location of	Sample:	W CORNER	of Process	BLDG, TOTE
Type of San	nple (circle):	Grab	Composite	
<u>Sample Ma</u>	trix (circle):	Oil Wastewater Product Drum Solids Other	Com	il = position = position = position =
<u>Parameters</u>	sampled for:			
ToPCRC	OCs tal Halogens Bs/VOCs CRA metals ashpoint/pH	L	ABECED "MICR	LOBATOR"
~ // pH (mples / PROPU field test result P VOCs P PCBs/VOCs P RCRA metal hpoint/pH/Reac	s		
TCITCI	<u>ls</u> LP VOCs LP PCBs/VOCs LP RCRA meta hpoint/pH/Reac	ls		

Sample Name (e.g. 51-D.	K, IA, SP OF APUI-L	<u>ii):</u> 51	101-02	
QA/QC (circle):	field sample	duplicate	MS/MSD	
<u>Date:</u> 10/22/02				
<u>Time:</u> 12:45				
Location of Sample:	MITH EDGESTOF	LOADING	DOCK RAM	> -TOTE
Type of Sample (circle):	Grab	Composi	te	
Sample Matrix (circle):	Oil Wastewater Product Drum Solids Other	C	Composition = Composition =	
Parameters sampled for	<u>:</u>			
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH		(°0 °	= 135 ppm } = 10ppm)	MultiRAE Musicle Tota
Aqueous SamplespH (field test resuTCLP VOCsTCLP PCBs/VOCTCLP RCRA metFlashpoint/pH/Re	Cs cals	"REC OIL" MAMMUA.		
Drum SolidsTCLP VOCsTCLP PCBs/VOCTCLP RCRA medFlashpoint/pH/Re	tals			

Sample Name (e.g. SI-DR,	IA, SP OF APU	1-01): SI = 101	0201
QA/QC (circle):	field sample	duplicate	MS/MSD
Date: 10/22/02			
<u>Time:</u> /2:45			
Location of Sample:	u174 EDGE	OF LOADING	DOCK RAMP-TOTE
Type of Sample (circle):	Grab	Composite	
Sample Matrix (circle):	OiD Wastewater Product Drum Solids Other	Comp Comp	position = position =
Parameters sampled for:			
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH		"REC OIL" FLAMMABLE	
Aqueous Samples pH (field test result) TCLP VOCs TCLP PCBs/VOCs TCLP RCRA metals Flashpoint/pH/React		CO = 135 p	opm > MultiRAE om > Inside Tote
Drum Solids TCLP VOCs TCLP PCBs/VOCs TCLP RCRA metals Flashpoint/pH/React			

	•	
Sample Name (e.g. SI-DR, TA	SP or AP01-01): 5 /	-LAB-01
QA/QC (circle):	eld sample duplicate	MS/MSD
Date: 10/22/02		
Time: 13.05		
Location of Sample: MAIN	1 BLDG, UPSTAIRS	CLOSET, 5 GAL PAIL
Type of Sample (circle):	Grab Comp	osite
W Pr	Oil Vastewater roduct Orum Solids Other	% Oil = Composition = Composition =
Parameters sampled for:		
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH	ACETONE	= 2000 ppm & MulhKAC = 19 % \ /nside Container
Aqueous Samples pH (field test result) TCLP VOCs TCLP PCBs/VOCs TCLP RCRA metals Flashpoint/pH/Reactivit	C 1	17 %) Inside Container
Drum SolidsTCLP VOCsTCLP PCBs/VOCs TCLP RCR A metals		

____Flashpoint/pH/Reactivity

Sample Name (e.g. SI-DR, TA	., SP or AP01-01): >1- LITB - 02
QA/QC (circle):	eld sample duplicate MS/MSD
Date: 10/22/02	
<u>Time:</u> 13:30	
Location of Sample: MAIN	BLDG, UNSTAIRS CLOSET, 5 GALLOW PAIL
Type of Sample (circle):	Composite
	Vastewater Composition = Trum Solids Other Composition =
Parameters sampled for:	
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH	"CARBOLINE" (LOOKS LIKE PAINT) RUST AKMOR HIGH GLOSS
Aqueous SamplespH (field test result)TCLP VOCsTCLP PCBs/VOCsTCLP RCRA metalsFlashpoint/pH/Reactivit	VOC: 90 ppm & Inside paid LEL = Ø MultiPAE
Drum SolidsTCLP VOCsTCLP PCBs/VOCsTCLP RCRA metalsFlashpoint/pH/Reactivity	ty

Sample Name (e.g. SI-DR, TA, S)	<u>P or AP01-01):</u>	SI-LAB-03	NOT AN	ACYTED
QA/QC (circle): field	sample duplic	SI-LAB-03 ate MS/MSD	SAMPLE	DISPOSCO
Date: 10/22/02				
<u>Time:</u> 13:40				
Location of Sample: MAIN	BLDG, UPSTAI	RS CAB		
Type of Sample (circle): Grab	Co	omposite		
Prod	n Solids	% Oil = Composition = Composition =		
Parameters sampled for:				
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH	HEXANE			
Aqueous Samples // PODUC (pH (field test result) TCLP VOCs TCLP PCBs/VOCs TCLP RCRA metals Flashpoint/pH/Reactivity				
Drum SolidsTCLP VOCsTCLP PCBs/VOCsTCLP RCRA metalsFlashpoint/pH/Reactivity				

Sample Name (e.g. SI-DR	R, TA, SP or APO	<u>1-01):</u> S/	-LAB-04
QA/QC (circle):	field sample	duplicate	MS/MSD
Date: 10/22/02			
<u>Time:</u> 13:45			
Location of Sample:	IAIN BLOG,	UPSTAIRS	LAB
Type of Sample (circle):	Grab	Compo	osite
Sample Matrix (circle):	Oil Wastewater Product Drum Solids Other		% Oil = Composition = Composition =
Parameters sampled for:			
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH	″ ^	NTRIC AC	10 "
Aqueous Samples	t) s als activity	MLY	

Sample Name (e.g. SI-DF	R, TA, SP or AP01-	<u>01):</u> SI-LA	B-05	
QA/QC (circle):	field sample	duplicate	MS/MSD	
Date: /0/22/02				
<u>Time:</u> 13:50				
Location of Sample:	RUM INSIDE MAIN BLOG	MAN-100R	ON WEST	SIDE OF
Type of Sample (circle):	Grab	Composite		
Sample Matrix (circle):	Oil Wastewater Product Drum Solids Other	Co Co	Oil = mposition = mposition = mposition =	
Parameters sampled for:	<u>:</u>			
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH	HEX	YOC =	778 ppm	insièle drum
Aqueous Samples / PAOA pH (field test resul TCLP VOCs TCLP PCBs/VOC TCLP RCRA meta Flashpoint/pH/Rea	s als		(n	rultiRAE)
Drum SolidsTCLP VOCsTCLP PCBs/VOCTCLP RCRA metaFlashpoint/pH/Rea	als			

Sample Name (e.g. SI-DI	2, TA, SP or AP01-	<u>01):</u> 5/-5	CP-01	
QA/QC (circle):	field sample	duplicate	MS/MSD	
Date: 10/22/02				
Time: 14.30				
Location of Sample: So	PALE PIT, NO	eth ACCESS	PROCESS ?	BLDS.
Type of Sample (circle):	Grab	Composite		
Sample Matrix (circle):	Wastewater Product Drum Solids Other	Co.	Oil = 30 mposition = mposition = mposition =	
Parameters sampled for:	<u> </u>			
VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH	l Ad	Waker dile Impli as	anted fr <i>en</i> much <i>as</i>	n pasible
Aqueous SamplespH (field test resulTCLP VOCsTCLP PCBs/VOCTCLP RCRA metaFlashpoint/pH/Rea	s als			
Drum SolidsTCLP VOCsTCLP PCBs/VOCTCLP RCRA metaFlashpoint/pH/Rea	als			

Sample Name (e.g. SI-DR, TA, SP or AP01-01): S/- TA2-6/				
QA/QC (circle):	field sample	duplicate	MS/MSD	
Date: 10/22/02				
<u>Time:</u> /5/5				
Location of Sample:	18T#2, Su	rface ca	YER	
Type of Sample (circle):	Grah	Composi	te	
Sample Matrix (circle):	Wastewater Product Drum Solids Other	C	o Oil = /00/o composition = composition =	
Parameters sampled for: Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH				
Aqueous SamplespH (field test result)TCLP VOCsTCLP PCBs/VOCsTCLP RCRA metalFlashpoint/pH/Reac Drum SolidsTCLP VOCsTCLP PCBs/VOCsTCLP RCRA metal Flashpoint/pH/Reac	ls etivity ls			

Sample Name (e.g. SI-D	R, TA, SP or AP01-	<u>01):</u> S1-7	TA2-02	
QA/QC (circle):	field sample	duplicate	MS/MSD	
Date: 10/22/02				
Time: 15:35				
Location of Sample:	AST #2 , SAI DEWN ID	MPLED W. 22' BEL	17H BUCKE M) HATCH	T AUGER
Type of Sample (circle):	Grab	Composite		<i>(* - * *)</i>
Sample Matrix (circle):	Oil Studge Wastewater Product Drum Solids Other	Co Co	Oil = /OO/o omposition = omposition =	
Parameters sampled for	<u>:</u>			
VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH				
Aqueous SamplespH (field test resuTCLP VOCsTCLP PCBs/VOCTCLP RCRA metFlashpoint/pH/Re	Cs tals			
Drum SolidsTCLP VOCsTCLP PCBs/VOCTCLP RCRA medFlashpoint/pH/Re	tals			

Sample Name (e.g. SI-DR, T.	A, SP or AP01-01	D: 5/~	CLA-01
QA/QC (circle):	field sample	duplicate	MS/MSD
Date: 10/22/02			
Time: /6:/0		_	
Location of Sample: CLAN	RIFICK #5 PLEVILLOSU	INSIDE RE.	CONTAINMENT AND
Type of Sample (circle):	Grab	Composite	2
	Oil Wastewater Product Drum Solids Other	Co Co	Oil = 100 10 composition = composition = composition =
Parameters sampled for:			
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH			
Aqueous Samples pH (field test result)TCLP VOCsTCLP PCBs/VOCsTCLP RCRA metalsFlashpoint/pH/Reactive	ity		
Drum Solids TCLP VOCs TCLP PCBs/VOCs TCLP RCRA metals Flashpoint/pH/Reactivity	ity		

Sample Name (e.g. SI-DR	, TA, SP or AP01-	<u>01):</u> S/-7	AC-01	
QA/QC (circle):	field sample	duplicate	MS/MSD	
Date: 10/22/02				
Time: 16:30			0.4.6.4	<i>"</i>
Location of Sample:	'AUSTIC SOOA	" AST IN	PROCESS	ELDS
Type of Sample (circle):	Grab	Composite		
Sample Matrix (circle):	Oil Wastewater Product Drum Solids Other	Con	oil = nposition = nposition = nposition =	
Parameters sampled for:				
Oil VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH		SCLAPED UNIVADING	CRYSTALS VALVE	ON TANK.
Prum Solids	ls .//	ONLY		
Drum SolidsTCLP VOCsTCLP PCBs/VOCsTCLP RCRA metaFlashpoint/pH/Read	ls			

Sample Name (e.g. SI-D	R, TA, SP or AP01-	<u>01):</u> 5/	- HSH - 01
QA/QC (circle):	field sample	duplicate	MS/MSD
Date: 10/22/02			
<u>Time:</u> /6:45			
Location of Sample:	ASH BIT IN	BOILER	HOUSE
Type of Sample (circle):	Grab	Compo	osite
Sample Matrix (circle):	Wastewater Product Drum Solids Other	E	% Oil = Composition = Composition =
Parameters sampled for	<u>:</u>		
VOCs Total Halogens PCBs/VOCs RCRA metals Flashpoint/pH			
Aqueous Samples pH (field test resulted to the second test resulted test resulte	's als		
Drum SolidsTCLP VOCsTCLP PCBs/VOCTCLP RCRA metFlashpoint/pH/Res	als		

APPENDIX D

Summary Tables of Sample Description and Analytical Results

U.S. EPA Analytical Results (22 October 2002) Oil Sampling

Sybill Site Assessment Detroit, Wayne County, Michigan

Parameter		Sample Identification			
1 arame	ici	SI-TOT-02 SI-TOT-02DP SI-TA2-01 SI-TA2-0			
Labeling Information	n	Rec Oil Rec Oil "Flammable" "Flammable" (duplicate)		None	None
of 1		Tote at south end of loading dock VOC = 10 CO = 135 LEL(%) = 0 $H_2S = 0$	Tote at south end of loading dock VOC = 10 CO = 135 LEL(%) = 0 $H_2S = 0$	AST #2, north side of Military Road - top layer	AST #2, north side of Military Road - sludge layer sampled using bucket auger 22-feet below hatch height
Drum description	Construction	Plastic Tote	Plastic Tote	Metal 250,000-gallon AST	Metal 250,000-gallon AST
Dram description	Volume	90%	90%	98%	98%
	Condition	Fair	Fair	Good	Good
Sample Matrix		Oil	Oil	Oil	Oil/Sludge
Parameter	Regulatory Limit				
<u>Total VOC:</u> (μg/kg) Benzene	NL	7,400	7,000	6,000 U	530 U
Toluene	NL	26,000	28,000	6,000 U	3,500
Ethyl benzene	NL	23,000	25,000	6,000 U	960
Xylenes (total)	NL	130,000	130,000	18,000 U	6,600
Styrene	NL	160,000	170,000	6,000 U	530 U
Total SVOCs: (mg/kg) Naphthalene	NL	37,000	38,000	250 U	250 U
2- Methylnaphthalene	NL	130,000	140,000	250 U	250 U

U.S. EPA Analytical Results (continued) Oil Sampling

Parameter	Regulatory		Sample L	ocation	
rarameter	Limit	SI-TOT-02	SI-TOT-02DP	SI-TA2-01	SI-TA2-02
Acenaphthene	NL	3,600	3,700	250 U	500 U
Fluorene	NL	1,700	1,700	250 U	500 U
Phenanthrene	NL	1,300	1,300	25 U	50 U
Total Metals: (mg/Kg) Arsenic	5	0.2 U	0.2 U	15	26
Barium	NL	1.0 U	1.0 U	36	140
Cadmium	2	0.05 U	0.05 U	0.17	0.29
Chromium	10	0.88 U 0.87 U		7.3	35
Lead	100	1.0 U	1.0 U	12	35
Silver	NL	0.5 U	0.5 U	0.5 U	0.85
Lead	NL	0.2 U	0.2 U	0.2 U	0.2 U
<u>Total Halogens:</u> (μg/Kg)	4,000,000	80	277	1,278	461
Characteristics of Hazardous Waste: pH	-<2, >12.5	6.69	6.9	4.59	6.41
Flash:	< 140 °F	>200 °F	>200 °F	>200 °F	>200 °F

Key:

PID = Photo ionization Detector

VOCs = Volatile organic compounds

SVOCs = Semi volatile organic compounds

mg/Kg = milligrams per kilogram

 μ g/Kg = micrograms per kilogram

TCLP = Toxicity Characteristic Leachate Procedure U = result is below method detection limit

mg/L = milligrams per liter

< = Less than

> = Greater than

NL = Not listed

N/A = Not Analyzed

AST = aboveground storage tank

Bolded values indicates that parameter exceeded criteria level

Source:

Trace Labs, Muskegon, Michigan and CT&E Labs, Ludington, Michigan, under START analytical TDD number S05-0210-003.

U.S. EPA Analytical Results (22 October 2002) Oil Sampling

Sybill Site Assessment Detroit, Wayne County, Michigan

Paramet	ar.		Sample Identification								
Faramet	CI	SI-CLA-01	SI-ASH-01	SI-SCP-01							
Labeling Information	1	None	None	None							
Observations/field te	st (ppm)	Enclosed clarifier #5 - overhead enclosure deteriorated	Boiler House Ash Pit	Floor Sump/Scale Pit in Process Building. Decanted water from sample.							
i. ·	Construction	Metal AST/Clarifier	Cement Floor Sump/Scale Pit								
Drum description	Volume	40%	50%	unknown							
	Condition	Poor	Fair	unknown/underground							
Sample Matrix		Oil	Oil/Sludge	Oil							
Parameter	Regulatory Limit										
Total VOC: (μg/Kg) Benzene	NL	750 U 910		700 U							
Toluene	NL	750 U	49,000	700 U							
nyl benzene	NL	750 U	5,400	890							
xylenes (total)	NL	2,300 U	26,000	3,500							
Styrene	NL	750 U	550 U	700 U							
Total SVOCs: (mg/L) Naphthalene	NL	250 U	500 U	500 U							
2- Methylnaphthalene	NL	250 U	500 U	500 U							
Acenaphthene	NL	250 U	500 U	500 U							

	U.S. EPA	Analytical Results (c	continued)			
Dozomotov	Regulatory		Sample Location			
Parameter	Limit	SI-CLA-01	SI-ASH-01	SI-SCP-01		
Fluorene	NL	250 U	500 U	500 U		
Phenanthrene	NL	25 U	50 U	50 U		
Total Metals: (mg/Kg) Arsenic	5	0.23	1.2			
Barium	NL	2.9	13	150		
Cadmium	2	0.05 U	0.21	1.2		
Chromium	10	3	6.3	35		
Lead	100	5.9	14	81		
Silver	NL	0.5 U	0.5 U	0.5 U		
Lead	NL	0.2 U	0.2 U	0.2		
Total Halogens: (μg/Kg)	4,000,000	4,043	1,804	728		
Characteristics of Hazardous Waste:	-<2, >12.5	4.38	6.08	7.96		

Key:

PID = Photo ionization Detector

< 140 °F

mg/L = milligrams per liter

170 °F

VOCs = Volatile organic compounds

< = Less than

SVOCs = Semi volatile organic compounds

> = Greater than

mg/Kg = milligrams per kilogram

NL = Not listed

 μ g/Kg = micrograms per kilogram

N/A = Not Analyzed

TCLP = Toxicity Characteristic Leachate Procedure

>200 °F

AST = aboveground storage tank

U = result is below method detection limit

Bolded values indicates that parameter exceeded criteria level

Source:

pН

Flash:

Trace Labs, Muskegon, Michigan and CT&E Labs, Ludington, Michigan, under START analytical TDD number S05-0210-003.

70 °F

U.S. EPA Analytical Results (22 October 2002) Waste Product Sampling

Sybill Site Assessment Detroit, Wayne County, Michigan

Parame	ler .		Sample 1	dentification	
1 aranic	ici	SI-DRM-01	SI-TOT-01	SI-TOT-01DP	SI-LAB-01
Labeling Information	n	"Tergitol NP- 12" Danger: Causes Eye Burns Interstate Chemical Company, Inc.	"Microbator"	"Microbator"	"Acetone"
Observations/field te	est (ppm)	Drum in rack, top row on right VOC = 0 CO = 220 LEL(%) = 0 $H_2S = 0$ pH = 7-8	Plastic Tote in southwest corner of Process Building VOC = 0 CO = 0 LEL (%) = 0 H ₂ S = 0 pH = 11	Plastic Tote in southwest corner of Process Building $VOC = 0$ $CO = 0$ $LEL(\%) = 0$ $H_2S = 0$ $pH = 11$	Drum in Main Building, upstairs closet VOC =2,000 CO = 0 LEL (%) = 19 H ₂ S = 0
	Construction	Plastic 55-gallon	Plastic Tote	Plastic Tote	Metal 5-gallon
Drum description	Volume	Partial	90%	90%	Partial
	Condition	Fair	Fair	Fair	Fair
Sample Matrix		Product - solids and crystals	Product	Product	Product
Parameter	Regulatory Limit				
TCLP VOC: (mg/L) Benzene	0.5	100U	1.0U	5.0U	1.2
Methyl ethyl ketone	0.5	500U	5.0U	25U	2,300

	τ	J.S. EPA Analytical Waste Produ	Results (continued) ct Sampling		
Parameter	Regulatory		Sample 1	Location	
Farameter	Limit	SI-DRM-01	SI-TOT-01	SI-TOT-01DP	SI-LAB-01
Characteristics of Hazardous Waste: pH	<2, >12.5	4.8	6.54	7.38	3.88

Key:

Flash:

PID = Photo ionization Detector

VOCs = Volatile organic compounds

> = Greater than < = Less than

< 140 °F

TCLP = Toxicity Characteristic Leachate Procedure

>200 °F

LEL = lower explosive limit

N/A = Not Analyzed

U = result is below method detection limit

mg/L = milligrams per liter

AST = aboveground storage tank

Source:

Trace Labs, Muskegon, Michigan and CT&E Labs, Ludington, Michigan, under START analytical TDD number S05-0210-003.

>200 °F

140 °F

100 °F

U.S. EPA Analytical Results (22 October 2002) Waste Product Sampling

Sybill Site Assessment Detroit, Wayne County, Michigan

Paramet	tor		Sample	Identification	
r aranne	ICI	SI-LAB-02	SI-LAB-04	SI-LAB-05	SI-TAC-01
Labeling Information	n	Carboline Rust Armor High Gloss	Nitric Acid	Hexane	Caustic Soda
Observations/field te	est (ppm)	Drum in Main Building, upstairs closet $VOC = 90$ $CO = 0$ $LEL(\%) = 0$ $H_2S = 0$	Main Building, upstairs lab pH = 0-1	Main Building, first floor. Hand pump attached to drum VOC = 778 CO = 0 LEL(%) = 0 $H_2S = 0$	AST in Process Building
Drum description	Construction	Metal 5-gallon	Glass 2.5 Liter	55-gallon metal drum	AST Approximately 4,000-gallon
Dram description	Volume	Full	60%	Partial	unknown
	Condition	Fair	Fair	Fair	Fair
Sample Matrix		Product	Product	Product	Product
Parameter	Regulatory Limit				
TCLP VOC: (mg/L) Benzene	0.5	0.1U	NA	1.1	NA
Methyl ethyl ketone	0.5	77	NA	5.0U	NA

U.S. EPA Analytical Results (continued)
Waste Product Sampling

Parameter	Regulatory		Sample I	_ocation	
Tarameter	Limit	SI-LAB-02	SI-LAB-04	SI-LAB-05	SI-LAB-01
Characteristics of Hazardous Waste: pH	<2, >12.5	4.05	0	4.01	12.97
Flash:	< 140 °F	95 °F	NA	75 °F	NA

Key:

PID = Photo ionization Detector

VOCs = Volatile organic compounds

> = Greater than < = Less than

TCLP = Toxicity Characteristic Leachate Procedure

LEL = lower explosive limit

N/A = Not Analyzed

U = result is below method detection limit

mg/L = milligrams per liter

AST = aboveground storage tank

Source:

Trace Labs, Muskegon, Michigan and CT&E Labs, Ludington, Michigan, under START analytical TDD number S05-0210-003.

APPENDIX E

Analytical Data

November 11, 2002

Ms. Linda Korobka Weston Solutions Inc. 2501 Jolly Rd., Suite 100 Okemos, MI 48864

RE: Trace ID CK248

Dear Ms. Korobka:

Enclosed are your analytical results.

This information was examined through Trace's validation process to ensure that all requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work. However, if there are exceptions, they will be noted at the bottom of the appropriate report page.

Please note that where surrogates are reported as "NA" in samples with Trace IDs CK248-01, 02, and 03, it is because the matrix of the sample either reacted with the surrogate or prevented the surrogate from being extracted. All problems with surrogates are matrix related.

Thank you for working with Trace. If you have questions regarding this data, please contact Ann Preston, our client services manager, at (231) 773-5998, ext. 224.

Sincerely.

Ray V. Buhl

Laboratory Manager

RVB/bmc Enclosures

SMINI LE LOGIN CHECKLIST

Date: 19/3/03 Cit	ent Name $\mathscr{W}^{arepsilon}$	Ston		# of Coalers:	2
	ect Name 5	Billon		Caoler #s:	TR2
Project #CKOCK Log	iged in by	milo		Cooler #s:	
		Receipt			
	Trace courier				
Cooler/samples delivered by	Hand delivered	Name of del	very person:		Ì
Cor	nmercial courier				
Did cooler come with a bill of lading?	No [4			
	Yes [Way Bill o	r Tracking #:		
	No				
C Seals present and intact on cooler?	Yes	Custody sea	ils signed by		
		Client (COC number:		
		Type of pack	ing in cooler:		
	Coolant and	d Temperatur	9		
Type of Coolant Used	T		·	taken in Cao	(er)
Yes	No	Date: 🔟	73305	Time: ()	<u> </u>
Slurry w/ crushed, cubed, or chip ice?		Tempe	rature Blank	5.4	·c
Multiple bags of ice around samples?		Range	of 3 samples _		,C
Ice Packs/ Blue Ice			Melt Water.		,C
No Coolant Present:		Ice still present	upon receipt: 🗾	Yes	No
	Ge	neral			
					Yes No NA
COC	taped to inside of co	ooler lid?			
All bottles arrived unbroken w	with labels in good co	ondition?			
	le is in a sealed pla	***************************************			
	Lapels filled out cor	* *************************************			
All bottle labels agree w		***************************************			
	mole to run tests re	***************************************			
	l and samples at co	***************************************			
Soil volatiles received and appropria	servative added to s	***************************************			
	bubbles absent from	***************************************			
	roperly and signed	***************************************			
	y TRACE sample of	* *************************************			
Was project manager ca		***************************************			
Contact:	•		Date		
		1.	Jhone 231 773	Sug8 Trace Analy	ytical Laboratories. Inc.
. L	of was no	-	mill tree 100 733	1 5998 - 124+ Black 1 0537 - Muskeyon,	Creek (10ad - M. 19444-2673
on the C-O-Casalige	id, it an	rivedia		rraceanalyi	cical@mad.scientist.com
a solid state, tollo-2	4-02				
					_==
				Assurance Accuracy	
				Accountab	ility

SAINT LE LOU IN CHECKLIST

Date: 02302 Client Name	INES	stan	# of	f Coolers: 2
HPN #: Project Name		+BiLL		Cooler #s: TR
Project #CK248 Logged in by	asm			Cooler #s:
	Cooler Re	ceipt		
Trace	courier			
Cooler/samples delivered by: Hand de	elivered X	Name of delivery pe	rson:	
Commercial	courier	Name of courier se	rvice:	
Did cooler come with a bill of lading?	No 🛂			
	Yes	Way Bill or Track	ing #	
	No 🗔			
3C Seals present and intact on cooler?	Yes	Custody seals signi	ed by	
		Client COC nu	mber	
		Type of packing in c	ooler:	
Coo	lant and Te	emperature		
Type of Coolant Used			ture (as take	
Yes N	0	Date: 10123		•
Slurry w/ crushed, cubed, or chip ice?	_	Temperature (Blank	,C
Multiple bags of ice around samples?	_	Range of 3 san	nples	,C
Ice Packs/ Blue Ice		Melt V	Vater	,C
No Coolant Present:	lo lo	ce still present upon re	eceipt: Yes	i No
	Gene	ral		
	- 			Yes No NA
COC taped to	inside of coole	r lid?		
All bottles arrived unbroken with labels	_			
Each sample is in a	·			
	lled out comple		*******	
All bottle labels agree with Chain				
Sufficient sample to r pH checked and san	· ·	***************************************		
Correct preservative	•	***************************************		러는
Soil volatiles received and appropriate check		eted?		
	absent from V	***************************************		
COC filled out properly a	and signed by c	lient?		
COC signed in by TRACE	E sample custo			7 6
Was project manager called and	samples discu	ssed?		
Contact:			Date:	
otes:	i	alcone	231 773 5998	Trace Analytical Laboraturies. In
0.00		tall free	100 733 5998 131 773 9537	224) Black Creek Road Muskegon, MI 49444-2673
-				
			1 (Assurance
				Accountubility

Plea	ase S	ign		Sam	ple l	dent	ifica	tion	/ Re	eque	st fo	r An	alytical	Ser	vices	<u> </u>		R	еро	rt R	esu	lts T	o:		-
		Item #			M	7	5	2	Ü	CE	=	70	SAMPLE NO	Special	NPDES	Regulatory Re	Project #:	Project Name	Email Address:	Phone:	City, St	Mailing	Contact	Client Name:	
2) \	<u>-</u>	æ				10/22/02	10/22/62	10/22/02	16/12/02	16/2/62	10/12/02	10/12/12	DATE TAKEN			Regulatory Requirements MERA TMDL's	**	Name:	ddress:	£15	City, State, Zip Code:	Mailing Address:	Contact Person:	lame:	Assurance Accuracy Accountability
,	The state of the s	RELEASED BY				14:36	1645	Histo	1535	1515	1245	1245	TIME TAKEN	X	1 00	ments		SYB		1.36)de:	25	611	WEST	₹ ()
·	1	ВУ		*									METALS FIELD FILTERED	Requir	. 5 Day . 2-4 Da	Standard		111		1-5	OKEN	01	MA	121/	phone toll-free fax
	du		3	TSTITUT	TRIP	S	5	<u>S</u> 1.	51.	51-	\$1-	51-		Requires prior approval	5 Day 2-4 Day (RUSH) 24 Hour (RUSH)	Standard (2 wk) DAY			ł	92Ci	nics	106	LCRO	Secui	Ö
	ula/M	RECEIVED BY	HAZH	ACH		, S	1387	- (11)	TAZ	TA2	TOT	107-	CLIE	oroval [םם כ	X S		PO #:		Fax:	141	YR	3KA	7C7V.S	1 K - C 231.773.5998 800.733.5998 231.773.6537
	Jose	ВҮ	RZARWIIS	POHIEVE	SLANK	Cl	10-F	1-01	20-02	0	-021	02	CLIENT SAMPLE ID	S0 = S	W = Water SE = Sediment OI = Oil	Matrix Key S = Soil	Sampled by:			4.15			7	,	
	1	DATE		REPO		13		\n\ 213/	13		0		E D	SO = Solid Waste	iter ediment	· · · · · · · · · · · · · · · · · · ·	ed by: .S	Trace	<u> </u>	-3E/	1880	SUL		2/0	Traze Analytical La 2241 Black Creek Ro Muskegon, MI 4944 www.trace-labs.com
	12/1/2	TE	MATER	CITHELL				MISS	+						D # Dri	WI = Wipes	MEY	## ##		- 59,	153	7-10			Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444·2673 www.trace-labs.com
	1902	TIME	1/4/	To the second	<u>z</u>	0/	61	10/	0	01	0)	0)	MATRIX	- - -	L = Liquid Waste A = Air D = Drinking Water	Vipes	B			2/		Q			oratories d -2673
_		item	R	TALL.	2 X	2 X	2 X	×	× ×	17 ×	12 X	\times	NUMBER OF CONTAINERS	<u> </u>			-	4	For	į įŲė	 • • •	y iti	AC	E A	, Inc.
4)	3)	3	1	1		×	×	×	X	×	×	×	6					5	1		in at 6		Rec		₽Ω
		REL	初分	B		*	X	×	×	X	X	X		7				atiles Preserved:		Preservative Checked			eived on ice:	Logged By:	ND W
		RELEASED BY	RA	Dal		*	X	X	X	X	×	×	ZV.	<u> </u>				served:		Checke		/	1	X	ORK
		34	R	une		X	X	X	X	X	×	×	E	7	2		Ą	E		d: Yes		(Yes	1	USTO AUTI
			3	717			 						E Z			5/	ALYSI	MeCH		No			0		DY R
		RECEIVED BY	ATKIN	HIM							PID.	Ola			\ <u>\</u>		S REQ	En Core	,				Coole	Chec	CHAIN-GCUSTODY RECORD AND WORK AUTHORIZATION
		ED BY		To						-	Mon	=16 pm		\			ANALYSIS REQUESTED	No	j				Cooler Temp (°C)	Checked By	2 6
			*	R	-						150							Low Level	-				00/	7	Page.
		DATE									Tammatic on	Chammagne Acce	REM										5		TRACE 199
		-									12 NO 12	L- '	1 ()				1								of Of
ŀ		TIME	-	-	-	-	-	-	-	+	2	D. J. L.	 	ole He	ealth Ha	zard									

ı	se S	ign	•	Sam	ple I	dent	ifica	tion	/ Re	ques	st fo	r An	alytical	Serv	ices			Re	port	Res	ults ⁻	Го:		4
		#tem		09	<i>⊘</i> 0	4	20	50	ر د	80	12	0	SAMPLE NO	USACE Special	HCHA NPDES	Regulato	Project #	Project Name	Email Address	City. Sta	Mailing	Contact	Client Name	
2)	<u>;</u>	Æ	* * *	,	otistos	10/12/02	olides	white	whda	१०/ज्य	uszlez	Nuloc	DATE TAKEN		Č	Regulatory Requirements	#:	Name:	<i>Ol ₹</i> ddress:	City, State, Zip Code	Mailing Address:	Contact Person:	lame:	Assurance Accuracy Accountability
,		RELEĄSED	MUST H		11030	353	1242	022	1365	1215	1215	1150	TIME TAKEN	, ,	امت	ments	,	SYB	2007	5	S	LIM	lucs,	€ ()
	N.	ВҮ	HAVE E						S	5	S	S	METALS FIELD FILTERED	· 24 Ho	. 5 Day	Turnaro		11		CO	.	DE	W21	phone toll:free fax
,	to)	Solin	RIP	51-17	7-15	7-15	5/ -		1-10	1-70	1-DRIM		24 Hour (RUSH) Requires prior approval	5 Day 2-4 Day (RUSH)	Turnaround Requirements			C	1) ((,c)	-101	Karc	SPLUD	è
	Cass	RECEIVED BY	A LONG	Bian	10-0 10-0	20.0S	1-18-04	AB	AB -0	7-0,	7-01	N-01	CLIE	proval	(10) (10)	ements		PO #	a A	- C	47	BKA	SMILL	231.773.5998 800.733.5998 231.773.6537
	Loss	УВҮ	shifts	25		N	4	-02		AQ,			CLIENT SAMPLE ID	01 = 0il S0 = Sc	W = Water SE = Sedir	Matrix Key	Samp		7	1	12 D)/\ /\	
	X11/2	٥,	2002				_	MS/					9 9	OI = Oil SO = Solid Waste	W = Water SE = Sediment	Xey	Sampled by: _ ∫	Trace Quote	ن ان	2001	, [\mathcal{C}	Trace Analytical Laboi 2241 Black Creek Road Muskegon, MI 49444-2 www.trace-labs.com
	21/2	DATE	III ATTO					MSD						D = 0	A = F	<u> </u>	7/2	ie #: 02.		107	H			ytical Laborato Creek Road MI 49444-2673 labs.com
	190%	TIME	35	7		7	7	7	7	7	-	ଟ	MATRIX	Drinking Water	L = Liquid Waste A = Air	Wines	Z.	ile	-	7/	100			Trace Analytical Laboratories, 2241 Black Creek Road Muskegon, MI 49444-2673 www.trace-labs.com
	(,	ltem	97632/		_	3 X	-	$\frac{\times}{2}$	X	υ _ι ×	\propto	(3) (X)	NUMBER OF CONTAINERS	i er				5	or U	se-l	oy≊ī iel∛C	RAC	E	1 /mc
4)	3)	3	1			×		×	×	×	×	×	TO.	2					$\overline{}$	24			Logged	A CH
		RELEA				X	<u> </u>	×	X	メ	×	×	177	Le Per				Volatiles Preserved:	Preservative Checked:	rel		Received on ice	d By:	AIN-O
		RELEASED BY	METRICALI	<u>'</u>	×	X	X	X	×		×	×	12/2	Su			$\lambda\lambda$	Þ₌	necked:	A	(Yes	M	F-CUS
		1	1	- 1	1 -						-			_		\ <u>`</u>	~		1	1	1 1	1 57	1)	
			┨ .			×		×	X	×	×	×	RH E	V.		Janker /	ANALY) MeOF	Yes	(u/Ka	\	20	,	TODY
		RECE	O KUMAI E			×		×	×	×	×	×	PH EXI	N. C.	a Rep	John W. John W.	ANALYSIS RE	МеОН	Yes No	Reitla		No	,	TODY RECO
		RECEIVED BY	┨ .			×	1	×	X	×	 	×	PH EXI	N. C.	a Rep	Janes Salvar	ANALYSIS REQUEST	MeOH En Core No		Rould		No	Checked By	HAIN-OF-CUSTODY RECORD IND WORK AUTHORIZATION
		RECEIVED BY	┨ .			X ALL	ve	× Ann	X	X OPE	X	×	PH CAST REAL	N. C.	a Rep	John Company	ANALYSIS REQUESTED	MeOH En Core No		Reitla			Checked By:	
		RECEIVED BY DATE	┨ .			X ALL	VE	×	X 20 / 100 =	X	×	× X	To the second se	N. C.	a Rep	JANUS S	REQUESTE	MeOH En Core		Reitla		No	Checked By:	Pag
			┨ .			X ALL	ve	×	X LO PID = 2000 PK	X OPE	X > pHY	×	REMARKS	N. C.	a Rep	DAMES !	REQUESTE	MeOH En Core No		Reitla		No	Checked By	

VOC110401W

BATCH ID:

TRACE ID: CK248-01
REPORT DATE: 11/06/02

Ms. Linda Korobka

Ms. Linda Korobka

Ms. Linda Korobka

ANALYSIS DATE: 11/04/02

ANALYST: gmr

D.L. MULTIPLIER: 2000

SAMPLE DATE: 10/22/02

CLIENT ID: Sybill

SAMPLE RECEIVED: 10/23/02

SAMPLE ID: S1-DRM-01

SAMPLE TYPE: Solid

EPA 1311/8260 TCLP VOLATILES	RESULT mg/L	REPORTING LIMIT mg/L
Benzene	υΔ	* 100
Carbon tetrachloride	UŢ	* 100
Chlorobenzene	υÌ	* 100
Chloroform	υ	* 100
Methyl ethyl ketone	ŭΙ	* 500
1,4-Dichlorobenzene	υl	* 100
1,2-Dichloroethane	υĺ	* 100
1,1-Dichloroethene	U }	* 100
Tetrachloroethene	υİ	* 1 00
Trichloroethene	U	* 100
Vinyl chloride	υ↓	* 100
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
1,2-Dichloroethane-d4	95	70 - 133
Toluene-d8	113	76 - 125
4-Bromofluorobenzene	94	71 - 123
1,2-Dichlorobenzene-d4	97	72 - 123

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

yent miles

SAMPLER: sm

one

1-free

TRACE ID: CK248-02 REPORT DATE: 11/06/02 Ms. Linda Korobka ANALYSIS DATE: 11/01/02 Weston Solutions Inc. ANALYST: gmr D.L. MULTIPLIER: 20 SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 CLIENT ID: Sybill SAMPLE ID: S1-TOT-01 SAMPLE TYPE: Liquid BATCH ID: VOC110102W SAMPLER: sm

RESULT REPORTING LIMIT EPA 1311/8260 **TCLP VOLATILES** mg/L mg/L 1.0 Benzene U U Carbon tetrachloride 1.0 Chlorobenzene U 1.0 U Chloroform 1.0 Methyl ethyl ketone U 5.0 1,4-Dichlorobenzene U 1.0 U 1,2-Dichloroethane 1.0 U 1,1-Dichloroethene 1.0 ひろ Tetrachloroethene 1.0 Trichloroethene U 1.0 Vinyl chloride U 1.0 SURROGATE PERFORMANCE **RECOVERY % CONTROL LIMIT %** 1,2-Dichloroethane-d4 91 70 133 76 Toluene-d8 110 125 4-Bromofluorobenzene 93 71 123 1,2-Dichlorobenzene-d4 100 72 123

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Fax

TRACE ID: CK248-03 REPORT DATE: 11/06/02 Ms. Linda Korobka ANALYSIS DATE: 11/01/02 Weston Solutions Inc. ANALYST: gmr D.L. MULTIPLIER: 100 SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 CLIENT ID: Sybill SAMPLE ID: S1-TOT-01DP SAMPLE TYPE: Liquid

BATCH ID: VOC110102W SAMPLER: sm

EPA 1311/8260 TCLP VOLATILES	RESULT mg/L	REPORTING LIMIT mg/L
Benzene	UĪ	* 5.0
Carbon tetrachloride	Ū	* 5.0
Chlorobenzene	Ūづ	* 5.0
Chloroform	Ü	* 5.0
Methyl ethyl ketone	Ü	* 25
1,4-Dichlorobenzene	Ū≾	* 5.0
1,2-Dichloroethane	Ü	* 5.0
1,1-Dichloroethene	Ú	* 5.0
Tetrachloroethene	US	* 5.0
Trichloroethene	U	* 5.0
Vinyl chloride	U	* 5.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
1,2-Dichloroethane-d4	96	70 - 133
Toluene-d8	111	76 - 125
4-Bromofluorobenzene	94	71 - 123
1,2-Dichlorobenzene-d4	100	72 - 123

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

231.773.5998 l-free 800.733.5998 231.773.6537

Ms. Linda Korobka

CLIENT ID:

BATCH ID:

SAMPLE ID:

Weston Solutions Inc.

Sybill

1,2-Dichloroethane-d4

4-Bromofluorobenzene

1,2-Dichlorobenzene-d4

Toluene-d8

S1-LAB-01

VOC103101W

TRACE ID: CK248-04

REPORT DATE: 11/06/02 ANALYSIS DATE: 11/01/02

> ANALYST: gmr

D.L. MULTIPLIER: 20

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAMPLER: sm

EPA 1311/8260 TCLP VOLATILES	RESULT mg/L	REPORTING LIMIT mg/L
Benzene	1.2	* 1.0
Carbon tetrachloride	U	* 10
Chlorobenzene	U	* 1.0
Chloroform	U	* 1.0
Methyl ethyl ketone	2300	* 580
1,4-Dichlorobenzene	U	* 1.0
1,2-Dichloroethane	U	* 1.0
1,1-Dichloroethene	U	* 1.0
Tetrachloroethene	Uゴ	* 1.0
Trichloroethene	U	* 1.0
Vinyl chloride	U	* 1.0
JRROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %

97

90

88

98

Therdinine 2

133

125

123

123

76

71

^{*} The reporting limit was raised due to a dilution because of high analyte concentrations.

Assurance Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc. TRACE ID: CK248-05
REPORT DATE: 11/06/02
ANALYSIS DATE: 11/01/02
ANALYST: gmr
D.L. MULTIPLIER: 2
SAMPLE DATE: 10/22/02

CLIENT ID: Sybill
SAMPLE ID: S1-LAB-02
BATCH ID: VOC103101W

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid SAMPLER: sm

EPA 1311/8260 TCLP VOLATILES	RESULT mg/L	REPORTING LIMIT mg/L
Benzene	U	* 0.10
Carbon tetrachloride	U	* 0.10
Chlorobenzene	U	* 0.10
Chloroform	U	* 0.10
Methyl ethyl ketone	77	** 25
1,4-Dichlorobenzene	U	* 0.10
1,2-Dichloroethane	U	* 0.10
1,1-Dichloroethene	U	* 0.10
Tetrachloroethene	บร์	* 0.10
Trichloroethene	U	* 0.10
Vinyl chloride	U	* 0.10
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
1,2-Dichloroethane-d4	112	70 - 133
Toluene-d8	97	76 - 125
4-Bromofluorobenzene	93	71 - 123
1,2-Dichlorobenzene-d4	102	72 - 123

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

J Karthylor

^{**} The reporting limit was raised due to a dilution because of high analyte concentrations.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill
SAMPLE ID: S1-LAB-05
BATCH ID: VOC103101W

TRACE ID: CK248-07
REPORT DATE: 11/06/02
ANALYSIS DATE: 10/31/02
ANALYST: gmr
D.L. MULTIPLIER: 20
SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid SAMPLER: sm

EPA 1311/8260 TCLP VOLATILES	RESULT mg/L	REPORTING LIMIT mg/L
Benzene	1.1	* 1.0
Carbon tetrachloride	U	* 1.0
Chlorobenzene	U	* 1.0
Chloroform	U	* 1.0
Methyl ethyl ketone	U	* 5.0
1,4-Dichlorobenzene	υ	• 1.0
1,2-Dichloroethane	U	• 1.0
1,1-Dichloroethene	U	* 1.0
Tetrachloroethene	U	* 1.0
Trichloroethene	Ū	* 1.0
Vinyl chloride	U	* 1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
1,2-Dichloroethane-d4	88	70 - 133
Toluene-d8	100	76 - 125
4-Bromofluorobenzene	86	71 - 123
1,2-Dichlorobenzene-d4	99	72 - 123

^{*} The reporting limit was raised due to a dilution because of high analyte concentrations.

Health 11/100

Accountability

Ms. Linda Korobka Weston Solutions Inc.

REPORT DATE: 11/06/02 ANALYSIS DATE: ANALYST: D.L. MULTIPLIER:

SAMPLE DATE: NA

TRACE ID: CK248-09

10/31/02

gmr

Sybill CLIENT ID: Trip Blanks SAMPLE ID: BATCH ID: VOC103101W SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid SAMPLER: sm

EPA 1311/8260 TCLP VOLATILES	RESULT mg/L	REPORTING LIMIT mg/L	
Benzene	U	0.050	
Carbon tetrachloride	U	0.050	
Chlorobenzene	U	0.050	
Chloroform	υ	0.050	
Methyl ethyl ketone	υ.	0.25	
1,4-Dichlorobenzene	U	0.050	
1,2-Dichloroethane	U	0.050	
1,1-Dichloroethene	U	0.050	
Tetrachloroethene	υ	0.050	
Trichloroethene	U	0.050	
Vinyl chloride	U	0.050	
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %	
1,2-Dichloroethane-d4	99	70 - 133	
Toluene-d8	108	76 - 125	
4-Bromofluorobenzene	87 —	71 - 123	
1,2-Dichlorobenzene-d4	96	72 - 123	

Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID:

Sybill

SAMPLE ID: S1-TOT-02 BATCH ID: VOC103101W

TRACE ID: CK248-10 REPORT DATE: 11/06/02 ANALYSIS DATE: 11/02/02 ANALYST: gmr D.L. MULTIPLIER: 190 **SAMPLE DATE: 10/22/02** SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

EPA 8260 VOLATILES METHANOL PRESERVED TARGET COMPOUND LIST	RESULT μg/kg	REPORTING LIMIT µg/kg
Chloromethane	U	* 4800
Vinyl chloride	Ü	* 4800
Bromomethane	Ū	* 4800
Chloroethane	Ü	* 4800
Acetone	Ū	* 38000
1,1-Dichloroethene	Ū	* 4800
Methylene chloride	ÚÍ	* 4800
1,2-Dichloroethene (total)	Ũ	* 9500
1,1-Dichloroethane	U	* 4800
2-Butanone	Ū	* 9500
Chloroform	U	4800
1,1,1-Trichloroethane	Ū	• 4800
Carbon tetrachloride	U	* 4800
Benzene	7400	4800
1,2-Dichloroethane	U	* 4800
Trichloroethene	U	* 4800
1,2-Dichloropropane	U	* 4800
Bromodichloromethane	U	• 4800
cis-1,3-Dichloropropene	U	* 4800
2-Hexanone	U	• 9500
Toluene	26000	4800
trans-1,3-Dichloropropene	U	* 4800
1,1,2-Trichloroethane	U	* 4800
4-Methyl-2-pentanone	U	* 9500
Tetrachloroethene	Ŭ	* 4800
Dibromochloromethane	U	* 4800
Chlorobenzene	U	* 4800
Ethyl benzene	23000	* 4800
Xylenes (total)	130000	* 14000
Styrene	160000	* 4800
Bromoform	U	* 4800
1,1,2,2-Tetrachloroethane	U	* 4800
Carbon disulfide	U	* 9500
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %

JRRUGATE PERFURMANCE	RECOVERT %	CONTR	OL L	HVH 1 70
1,2-Dichloroethane-d4	92	70	-	133
Toluene-d8	105	76	-	125
4-Bromofluorobenzene	88	71	-	123
1,2-Dichlorobenzene-d4	103	72	-	123

* The reporting limit was raised due to a dilution because of high analyte concentrations.

Ms. Linda Korobka Weston Solutions Inc. TRACE ID: CK248-11
REPORT DATE: 11/06/02
ANALYSIS DATE: 11/02/02
ANALYST: gmr
D.L. MULTIPLIER: 220
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02
SAMPLE TYPE: Oil

SAMPLER:

sm

CLIENT ID: Sybill
SAMPLE ID: S1-TOT-02DP
BATCH ID: VOC110102W

EPA 8260 VOLATILES METHANOL PRESERVED ARGET COMPOUND LIST	RESULT μ g/k g	REPORTING LIMIT µg/kg
Chloromethane	U	* 5500
Vinyl chloride	U	* 5500
Bromomethane	U	* 5500
Chloroethane	U	* 5500
Acetone	U	* 22000
1,1-Dichloroethene	U	* 5500
Methylene chloride	UI	* 5500
1,2-Dichloroethene (total)	U	* 11000
1,1-Dichloroethane	U	* 5500
2-Butanone	U	* 11000
Chloroform	U	* 5500
1,1,1-Trichloroethane	U	* 5500
Carbon tetrachloride	U	* 5500
Benzene	7000℃	* 5500
1,2-Dichloroethane	U	* 5500
Trichloroethene	U	* 5500
1,2-Dichloropropane	U	* 5500
Bromodichloromethane	U	* 5500
cis-1,3-Dichloropropene	U	* 5500
2-Hexanone	U	* 11000
Toluene	28000 5	* 5500
trans-1,3-Dichloropropene	U	* 5500
1,1,2-Trichloroethane	U	* 5500
4-Methyl-2-pentanone	U	* 11000
Tetrachloroethene	Ū	* 5500
Dibromochloromethane	U	* 5500
Chlorobenzene	U	* 5500
Ethyl benzene	25000	* 5500
Xylenes (total)	1300005	* 17000
Styrene	170000 🕇	* 5500
Bromoform	U	* 5500
1,1,2,2-Tetrachloroethane	Ü	* 5500
Carbon disulfide	U	• 11000
URROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
1.2 Diablers athems d4	07	70 422

BURRUGATE PERFURMANCE	RECOVERT %	CONTR	OL L	.IIVIII 70
1,2-Dichloroethane-d4	97	70	-	133
Toluene-d8	110	76	-	125
4-Bromofluorobenzene	98	71	-	123
1,2-Dichlorobenzene-d4	101	72	-	123

^{*} The reporting limit was raised due to a dilution because of high analyte concentrations.

Accuracy Accountability

TRACE ID: CK248-12

REPORT DATE: 11/06/02

ANALYSIS DATE: 11/04/02

ANALYST: gmr D.L. MULTIPLIER:

240

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED:

10/23/02

CLIENT ID: SAMPLE ID:

Ms. Linda Korobka

Weston Solutions Inc.

Sybill

Oil

BATCH ID:

S1-TA2-01 VOC103101W

SAMPLE TYPE:

SAMPLER: sm

EPA 8260 VOLATILES METHANOL PRESERVED RESULT REPORTING LIMIT TARGET COMPOUND LIST μg/kg μ**g/kg** Chloromethane U 6000 Vinyl chloride U 6000 Bromomethane U 6000 Chloroethane U 6000 Acetone Ü 240000 U 1,1-Dichloroethene 6000 ロゴ 6000 Methylene chloride 1,2-Dichloroethene (total) U 12000 1,1-Dichloroethane Ū 6000 2-Butanone U 12000 Chloroform U 6000 1,1,1-Trichloroethane U 6000 Carbon tetrachloride U 6000 U Benzene 6000 U5 1,2-Dichloroethane 6000 Trichloroethene 6000 u 1,2-Dichloropropane Ū 6000 Bromodichloromethane U 6000 cis-1,3-Dichloropropene U 6000 2-Hexanone U 12000 Toluene Ū 6000 trans-1,3-Dichloropropene U 6000 1,1,2-Trichloroethane U 6000 4-Methyl-2-pentanone U 12000 Tetrachloroethene US 6000 Dibromochloromethane U 6000 Chlorobenzene U 6000 Ethyl benzene U 6000 Xylenes (total) Ū 18000 Styrene U 6000 **Bromoform** U 6000 1,1,2,2-Tetrachloroethane U 6000 Carbon disulfide Ū 12000

SURROGATE PERFORMANCE	RECOVERY %	CONTR	ROL L	IMIT %
1,2-Dichloroethane-d4	98	70		133
Toluene-d8	105	76	-	125
4-Bromofluorobenzene	85	71	-	123
1,2-Dichlorobenzene-d4	95	72	-	123
		71 72	-	

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

عربيني فكالسمفك وواسطا السااا

Accuracy Accountability

Ms. Linda Korobka

Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TA2-02 BATCH ID: VOC110401W

TRACE ID: CK248-13 REPORT DATE: 11/06/02 ANALYSIS DATE: 11/04/02 ANALYST: gmr D.L. MULTIPLIER: 21 SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

> SAMPLE TYPE: Oil SAMPLER: sm

EPA 8260 VOLATILES METHANOL PRESERVED	RESULT	REPORTING LIMIT
TARGET COMPOUND LIST	μg/kg	μ g/kg
Chloromethane	U	* 530
Vinyl chloride	Ŭ	* 530
Bromomethane	Ü	* 530
Chloroethane	Ū	* 530
Acetone	U	* 2100
1,1-Dichloroethene	U	* 530
Methylene chloride	UI	* 530
1,2-Dichloroethene (total)	U	* 1100
1,1-Dichloroethane	U	* 530
2-Butanone	U	* 1100
Chloroform	U	* 530
1,1,1-Trichloroethane	U	* 530
Carbon tetrachloride	U	* 530
Benzene	U	* 530
1,2-Dichloroethane	υJ	* 530
Trichloroethene	<u>U</u>	* 530
1,2-Dichloropropane	U	* 530
Bromodichloromethane	U	* 530
cis-1,3-Dichloropropene	U	* 530
2-Hexanone	U	2500
Toluene	3500	* 530
trans-1,3-Dichloropropene	U	* 530
1,1,2-Trichloroethane	U	• 530
4-Methyl-2-pentanone	U	2500
Tetrachloroethene	U2	* 530
Dibromochloromethane	U	* 530
Chlorobenzene	U	* 530
Ethyl benzene	960	* 530
Xylenes (total)	6600	* 1600
Styrene	U	* 530
Bromoform	U	* 530
1,1,2,2-Tetrachloroethane	U	* 530
Carbon disulfide	Ū	* 1100
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
1,2-Dichloroethane-d4	72	70 - 133
Toluene-d8	115	76 - 125

^{*} The reporting limit was raised due to a dilution because of high analyte concentrations.

4-Bromofluorobenzene

1,2-Dichlorobenzene-d4

91

101

71

123

123

Assurance Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

TRACE ID: CK248-14 REPORT DATE: 11/06/02 ANALYSIS DATE: 11/04/02 ANALYST: amr D.L. MULTIPLIER: SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Oil

SAMPLER: sm

CLIENT ID: Sybill SAMPLE ID: S1-CLA-01 BATCH ID: VOC110401W

EPA 8260 VOLATILES REPORTING LIMIT RESULT METHANOL PRESERVED TARGET COMPOUND LIST μg/kg μg/kg u 750 Chloromethane Vinyl chloride U 750 750 Bromomethane U Chloroethane Ū 750 Acetone Ū 3000 1.1-Dichloroethene U 750 UЗ Methylene chloride 750 1,2-Dichloroethene (total) U 1500 1,1-Dichloroethane Ū 750 2-Butanone U 1500 Chloroform U 750 1,1,1-Trichloroethane U 750 Ū Carbon tetrachloride 750 Benzene U 750 บร 1.2-Dichloroethane 750 Trichloroethene 750 1,2-Dichloropropane Ũ 750 Bromodichloromethane U 750 cis-1,3-Dichloropropene U 750 2500 2-Hexanone U Ū Toluene 750 trans-1,3-Dichloropropene U 750 1,1,2-Trichloroethane U 750 4-Methyl-2-pentanone U 2500 Tetrachloroethene บัว 750 Dibromochloromethane U 750 Chlorobenzene U 750 Ethyl benzene U 750 Xylenes (total) Ū 2300 750 Styrene U Bromoform U 750 750 1,1,2,2-Tetrachloroethane 1500 Carbon disulfide **RECOVERY %** SURROGATE PERFORMANCE **CONTROL LIMIT %** 1,2-Dichloroethane-d4 80 70 133 125 Toluene-d8 115 76 71 123

* Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

4-Bromofluorobenzene

1,2-Dichlorobenzene-d4

72

123

92

98

Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID:

BATCH ID:

Sybill SAMPLE ID: S1-ASH-01 VOC110401W

TRACE ID: CK248-15 REPORT DATE: 11/06/02 ANALYSIS DATE: 11/04/02 ANALYST: gmr D.L. MULTIPLIER: 22 SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

EPA 8260 VOLATILES METHANOL PRESERVED TARGET COMPOUND LIST	RESULT μg/kg	REPORTING LIMIT μg/kg
Chloromethane	U	* 550
Vinyl chloride	U	* 550
Bromomethane	U	* 550
Chloroethane	U	* 550
Acetone	Ū	* 2200
1,1-Dichloroethene	U	* 550
Methylene chloride	υΣ	* 550
1,2-Dichloroethene (total)	U	* 1100
1,1-Dichloroethane	U	* 550
2-Butanone	U	* 1100
Chloroform	U	* 550
1,1,1-Trichloroethane	U	* 550
Carbon tetrachloride	U	* 550
Benzene	910	* 550
1,2-Dichloroethane	Uろ	* 550
Trichloroethene	U	* 550
1,2-Dichloropropane	U	* 550
Bromodichloromethane	U	* 550
cis-1,3-Dichloropropene	U	* 550
2-Hexanone	Ú	2500
Toluene	49000	* 550
trans-1,3-Dichloropropene	U	* 550
1,1,2-Trichloroethane	Ü	* 550
4-Methyl-2-pentanone	Ū	2500
Tetrachloroethene	<u> </u>	* 550
Dibromochloromethane	Ü	* 550
Chlorobenzene	U	* 550
Ethyl benzene	5400	* 550
Xylenes (total)	26000	* 1700
Styrene	U	* 550
Bromoform	Ü	* 550
1,1,2,2-Tetrachloroethane	Ü	* 550
Carbon disulfide		* 1100
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %

SURROGATE PERFORMANCE RECOVERY % CONTROL LIMIT % 1,2-Dichloroethane-d4 78 70 133 Toluene-d8 113 76 125 4-Bromofluorobenzene 93 71 123 1,2-Dichlorobenzene-d4 99 72 123

^{*} The reporting limit was raised due to a dilution because of high analyte concentrations.

Assurance Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc. TRACE ID: CK248-16
REPORT DATE: 11/06/02
ANALYSIS DATE: 11/04/02
ANALYST: gmr
D.L. MULTIPLIER: 28
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02

CLIENT ID: Sybill
SAMPLE ID: S1-SCP-01
BATCH ID: VOC110401W

SAMPLE TYPE: Oil SAMPLER: sm

EPA 8260 VOLATILES METHANOL PRESERVED TARGET COMPOUND LIST	RESULT μg/kg	REPORTING LIMIT µg/kg
Chloromethane	U	* 700
Vinyl chloride	Ü	• 700
Bromomethane	Ü	* 700
Chloroethane	Ü	* 700
Acetone		* 2800
1,1-Dichloroethene	Ü	* 700
Methylene chloride	צט	* 700
1,2-Dichloroethene (total)	Ŭ	* 1400
1,1-Dichloroethane	Ū	* 700
2-Butanone	Ŭ	÷ 1400
Chloroform	Ŭ	* 700
1,1,1-Trichloroethane	Ŭ	* 700
Carbon tetrachloride	-	* 700
Benzene	ŭ	• 700
1,2-Dichloroethane	υ≾	* 700
Trichloroethene	Ü	* 700
1,2-Dichloropropane	Ū	* 700
Bromodichloromethane	Ŭ	* 700
cis-1,3-Dichloropropene	Ü	* 700
2-Hexanone	Ŭ	2500
Toluene	-	* 700
trans-1,3-Dichloropropene	ŭ	* 700
1,1,2-Trichloroethane	Ū	* 700
4-Methyl-2-pentanone	Ü	2500
Tetrachloroethene	ÜŚ	* 700
Dibromochloromethane	U	* 700
Chlorobenzene	Ü	* 700
Ethyl benzene	890	* 700
Xylenes (total)	3500	* 2100
Styrene	Ü	* 700
Bromoform	Ū	* 700
1,1,2,2-Tetrachloroethane	Ü	* 700
Carbon disulfide	 ŭ	* 1400
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %

SURROGATE PERFORMANCE RECOVERY % CONTROL LIMIT % 1,2-Dichloroethane-d4 77 70 133 Toluene-d8 76 125 113 4-Bromofluorobenzene 91 71 123 1,2-Dichlorobenzene-d4 101 123

^{*} The reporting limit was raised due to a dilution because of high analyte concentrations.

Assurance Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill
SAMPLE ID: Trip Blank
BATCH ID: VOC103101W

TRACE ID: CK248-17
REPORT DATE: 11/06/02
ANALYSIS DATE: 10/31/02
ANALYST: gmr
D.L. MULTIPLIER: 1
SAMPLE DATE: NA

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Water SAMPLER: sm

EPA 8260 VOLATILES FARGET COMPOUND LIST	RESULT μg/L	REPORTING LIMIT μg/L
Chloromethane	U	1.0
Vinyl chloride	U	1.0
Bromomethane	U	1.0
Chloroethane	U	1.0
Acetone	U	25
1,1-Dichloroethene	U	1.0
Methylene chloride	め	5.0
1,2-Dichloroethene (total)	U	1.0
1,1-Dichloroethane	Ū	1.0
2-Butanone	U	25
Chloroform	U	1.0
1,1,1-Trichloroethane	U	1.0
Carbon tetrachloride		1.0
Benzene	U ,	1.0
1,2-Dichloroethane	کا	1.0
Trichloroethene	U	1.0
1,2-Dichloropropane	Ü	1.0
Bromodichloromethane	U	1.0
cis-1,3-Dichloropropene	U	1.0
2-Hexanone	U	50
Toluene	U	1.0
trans-1,3-Dichloropropene	U	1.0
1,1,2-Trichloroethane	U	1.0
4-Methyl-2-pentanone	U .	50
Tetrachloroethene	<u> </u>	1.0
Dibromochloromethane	U	1.0
Chlorobenzene	U	1.0
Ethyl benzene	Ú	1.0
Xylenes (total)	Ü	3.0
Styrene	Ū	1.0
Bromoform	Ū	1.0
1,1,2,2-Tetrachloroethane	Ũ	1.0
Carbon disulfide	-	5.0

SURROGATE PERFORMANCE	RECOVERY %	CONTROL L	MIT %
1,2-Dichloroethane-d4	103	70 -	133
Toluene-d8	108	76 -	125
4-Bromofluorobenzene	90	71 -	123
1,2-Dichlorobenzene-d4	97	72 -	123

Ms. Linda Korobka

CLIENT ID:

BATCH ID:

SAMPLE ID:

Weston Solutions Inc.

Sybill

S1-DRM-01

PCB102501O

TRACE ID: CK248-01
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/25/02
ANALYST: jp

D.L. MULTIPLIER: 1

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Solid SAMPLER: sm

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	U	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	Ū	1.0
Aroclor-1254	U	1.0
Aroclor-1260	U	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	84	58 - 127
Tetrachloro-m-xylene	78	53 - 128

2 16 mg/or

Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill
SAMPLE ID: S1-TOT-01
BATCH ID: PCB102501W

TRACE ID: CK248-02
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/28/02
EXTRACTION DATE: 10/25/02
ANALYST: jp
D.L. MULTIPLIER: 10
SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid SAMPLER: sm

EPA 8082 PCBs	RESULT μg/L	REPORTING LIMIT μg/L
Aroclor-1016	us	1.0
Aroclor-1221	υĭ	1.0
Aroclor-1232	υÌ	1.0
Aroclor-1242	U	1.0
Aroclor-1248	υl	1.0
Aroclor-1254	U	1.0
Aroclor-1260	u V	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	48	32 - 95
Tetrachloro-m-xylene	* 36	38 - 86

^{*} The secondary surrogate (tetrachloro-m-xylene) recovery for this sample fell outside the laboratory established control limits. The primary surrogate (decachlorobiphenyl) percent recovery was in control. No data requires qualification.

y landly 100

Ms. Linda Korobka

CLIENT ID:

BATCH ID:

Weston Solutions Inc.

Accountability

Sybill SAMPLE ID: S1-TOT-01DP

PCB102501W

TRACE ID: CK248-03

REPORT DATE: 11/04/02 ANALYSIS DATE: 10/28/02

EXTRACTION DATE: 10/25/02

ANALYST: jp

D.L. MULTIPLIER: 10

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAMPLER: sm

EPA 8082 PCBs	RESULT μg/L	REPORTING LIMIT μg/L
Aroclor-1016	U	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	U	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	76	32 - 95
Tetrachloro-m-xylene	61	38 - 86

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID:

BATCH ID:

SAMPLE ID:

Accuracy Accountability

Sybill

S1-LAB-01

PCB1025010

TRACE ID: CK248-04

REPORT DATE: 11/04/02

ANALYSIS DATE: 10/30/02 **EXTRACTION DATE:** 10/25/02

ANALYST: jp

D.L. MULTIPLIER:

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAM	PLER:	sm

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	UJ	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	υS	1.0
URROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	83	58 - 127
Tetrachloro-m-xylene	76	53 - 128

Accuracy Accountability

> TRACE ID: CK248-05 REPORT DATE: 11/04/02

ANALYSIS DATE: 10/31/02

Ms. Linda Korobka **EXTRACTION DATE:** 10/25/02 Weston Solutions Inc. ANALYST: D.L. MULTIPLIER: SAMPLE DATE: 10/22/02 CLIENT ID: SAMPLE RECEIVED: 10/23/02 Sybill SAMPLE ID: SAMPLE TYPE: Liquid S1-LAB-02 SAMPLER: sm PCB102501O BATCH ID:

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	υs	1.0
Aroclor-1221	Ü	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	UT	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	85	58 - 127
Tetrachloro-m-xylene	80	53 - 128

Ms. Linda Korobka

CLIENT ID:

BATCH ID:

SAMPLE ID:

Weston Solutions Inc.

Sybill

Tetrachloro-m-xylene

S1-LAB-05

PCB102501O

Assurance Accuracy Accountability

> TRACE ID: CK248-07 REPORT DATE: 11/04/02

ANALYSIS DATE: 10/30/02 EXTRACTION DATE: 10/25/02

ANALYST: jp

D.L. MULTIPLIER: 1

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAMPLER: sm

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	υζ	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	υŚ	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	82	58 - 127

91

1 webl 1119102

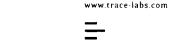
53

128

Assurance Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill
SAMPLE ID: S1-TOT-02
BATCH ID: PCB1025010


TRACE ID: CK248-10
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/30/02
EXTRACTION DATE: 10/25/02
ANALYST: jp
D.L. MULTIPLIER: 1

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Oil

SAMPLER: sm

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	υs	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	りえ	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	86	58 - 127
Tetrachloro-m-xylene	78	53 - 128

Thomber

Ms. Linda Korobka

CLIENT ID:

BATCH ID:

SAMPLE ID:

Weston Solutions Inc.

Sybill

TRACE ID: CK248-11

REPORT DATE: 11/04/02 ANALYSIS DATE: 10/30/02

EXTRACTION DATE: 10/30/02

ANALYST: jp

D.L. MULTIPLIER: 1

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil

SAMPLER: sm

S1-TOT-02DP SAMP: PCB102501O S

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	UЗ	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Arocior-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	υζ	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	81	58 - 127
Tetrachloro-m-xylene	72	53 - 128

Theador

Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill
SAMPLE ID: S1-TOT-01

BATCH ID: S1-101-01
BNA102801W

TRACE ID: CK248-02
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/28/02
ANALYST: avl
D.L. MULTIPLIER: 5
SAMPLE DATE: 10/22/02

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid SAMPLER: sm

EPA 1311/8270 TCLP SEMI-VOLATILE ORGANICS	RESULT mg/L	REPORTING LIMIT mg/L
Pyridine	U	0.10
2-Methylphenol	* U3	0.10
3/4-Méthylphenol	* U エ	0.10
Hexachloroethane	U	0.10
Nitrobenzene	U	0.10
Hexachloro-1,3-butadiene	U	0.10
2,4,6-Trichlorophenol	*U3	0.10
2,4,5-Trichlorophenol	* U 🌫	0.10
2,4-Dinitrotoluene	U	0.10
Hexachlorobenzene	U	0.10
Pentachlorophenol	* U≾	0.25
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	22 - 63
Phenol-d5	* NA	16 - 45
Nitrobenzene-d5	82	32 - 125
2-Fluorobiphenyl	95	33 - 115
2,4,6-Tribromophenol	* NA	25 - 122
p-Terphenyl-d14	86	62 - 112

^{*} The surrogate was out of control low when compared to the control limits. The results for the acid compounds must be considered estimated.

NA = Not available

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill

SAMPLE ID: S1-TOT-01DP BATCH ID: BNA102801W TRACE ID: CK248-03
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/28/02
ANALYST: avl
D.L. MULTIPLIER: 1
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid SAMPLER: sm

EPA 1311/8270 TCLP SEMI-VOLATILE ORGANICS	RESULT mg/L	REPORTING LIMIT mg/L
Pyridine	U	0.10
2-Methylphenol	* U Ś	0.10
3/4-Methylphenoi	* U ጜ	0.10
Hexachloroethane	υ	0.10
Nitrobenzene	U	0.10
Hexachloro-1,3-butadiene	U	0.10
2,4,6-Trichlorophenol	+ U<	0.10
2,4,5-Trichlorophenol	⁺U≾	0.10
2,4-Dinitrotoluene	U	0.10
Hexachlorobenzene	U	0.10
Pentachiorophenol	* US	0.10
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	22 - 63
Phenol-d5	* NA	16 - 45
Nitrobenzene-d5	75	32 - 125
2-Fluorobiphenyl	87	33 - 115
2,4,6-Tribromophenol	* NA	25 - 122
p-Terphenyl-d14	78	62 - 112

^{*} The surrogate was out of control low when compared to the control limits. The results for the acid compounds must be considered estimated.

NA = Not available

Throbby 102

Weston Solutions Inc.

Assurance Accuracy Accountability

TRACE ID: CK248-16
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/25/02

ANALYST: jp D.L. MULTIPLIER: 1

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

CLIENT ID: Sybill
SAMPLE ID: S1-SCP-01
BATCH ID: PCB1025010

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	U	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	U	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	101	58 - 127
Tetrachloro-m-xylene	97	53 - 128

March 10102

Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-DRM-01 BATCH ID: BNA102801W

TRACE ID: CK248-01
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/28/02
ANALYST: avi
D.L. MULTIPLIER: 10
SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Solid SAMPLER: sm

EPA 1311/8270 TCLP SEMI-VOLATILE ORGANICS	RESULT mg/L	REPORTING LIMIT mg/L
Pyridine	*45	* 0.20
2-Methylphenol	* U Ĭ	* 0.20
3/4-Methylphenol	* U \	* 0.20
Hexachloroethane	*U \	* 0.20
Nitrobenzene	+υ \	* 0.20
Hexachloro-1,3-butadiene	*Ū \	* 0.20
2,4,6-Trichlorophenol	*U	* 0.20
2,4,5-Trichlorophenol	• Ū	* 0.20
2,4-Dinitrotoluene	•u	* 0.20
Hexachlorobenzene	* U	* 0.20
Pentachlorophenol	• U √	* 0.50
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	22 - 63
Phenol-d5	* NA	16 - 45
Nitrobenzene-d5	* NA	32 - 125
2-Fluorobiphenyl	* NA	33 - 115
2,4,6-Tribromophenol	* NA	25 - 122
p-Terphenyl-d14	* NA	62 - 112

^{*} The surrogate was out of control low when compared to the control limits. The result and reporting limit must be considered estimated.

NA = Not available

J. Kordillylor

CLIENT ID:

BATCH ID:

SAMPLE ID:

Weston Solutions Inc.

Sybill

S1-CLA-01

PCB102501O

Accuracy Accountability

TRACE ID: CK248-14

REPORT DATE: 11/04/02

ANALYSIS DATE: 10/31/02

EXTRACTION DATE: 10/25/02

ANALYST: jp

D.L. MULTIPLIER: 4.5

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE:

Oil

SAMPLER: sm

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	U	4.5
Aroclor-1221	U	4.5
Aroclor-1232	U	4.5
Aroclor-1242	U	4.5
Aroclor-1248	U	4.5
Aroclor-1254	U	4.5
Aroclor-1260	U	4.5
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	* NA	58 - 127
Tetrachloro-m-xylene	* NA	53 - 128

^{*} A dilution was required on this sample. Consequently, surrogate recoveries are not available.

Weston Solutions Inc.

Assurance Accuracy Accountability

TRACE ID: CK248-15
REPORT DATE: 11/04/02

ANALYSIS DATE: 10/31/02 EXTRACTION DATE: 10/25/02

ANALYST: jp D.L. MULTIPLIER: 1

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

CLIENT ID: Sybill
SAMPLE ID: S1-ASH-01
BATCH ID: PCB1025010

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	U	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	U	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	86	58 - 127
Tetrachloro-m-xylene	94	53 - 128

Thousand

SAMPLE ID:

BATCH ID:

Assurance
Accuracy
Accountability

TRACE ID: CK248-12 REPORT DATE: 11/04/02

ANALYSIS DATE: 10/31/02

EXTRACTION DATE: 10/25/02

ANALYST: jp D.L. MULTIPLIER: 5

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

Weston Solutions Inc.

CLIENT ID: Sybill

S1-TA2-01

PCB1025010

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	U	5.0
Aroclor-1221	U	5.0
Aroclor-1232	U	5.0
Aroclor-1242	U	5.0
Aroclor-1248	U	5.0
Aroclor-1254	U	5.0
Aroclor-1260	U	5.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	* NA	58 - 127
Tetrachloro-m-xylene	* NA	53 - 128

^{*} A dilution of 1:5 or greater was required on this sample. Consequently, surrogate recoveries are not available.

Hallylor

Ms. Linda Korobka

Weston Solutions Inc.

Accuracy Accountability

> TRACE ID: CK248-13 REPORT DATE: 11/04/02 ANALYSIS DATE: 10/31/02

EXTRACTION DATE: 10/25/02

ANALYST: jp D.L. MULTIPLIER:

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

CLIENT ID: Sybill SAMPLE ID: S1-TA2-02 BATCH ID: PCB1025010

EPA 8082 PCBs	RESULT mg/kg	REPORTING LIMIT mg/kg
Aroclor-1016	U	1.0
Aroclor-1221	U	1.0
Aroclor-1232	U	1.0
Aroclor-1242	U	1.0
Aroclor-1248	U	1.0
Aroclor-1254	U	1.0
Aroclor-1260	U	1.0
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
Decachlorobiphenyl	77	58 - 127
Tetrachloro-m-xylene	84	53 - 128

Accountability

REPORT DATE: 11/04/02
ANALYSIS DATE: 10/30/02
Ms. Linda Korobka

Weston Solutions Inc.

EXTRACTION DATE: 10/25/02
ANALYST: avl
D.L. MULTIPLIER: 1
SAMPLE DATE: 10/22/02
CLIENT ID: Sybill

REPORT DATE: 11/04/02
CLIENT SAMPLE DATE: 10/23/02

CLIENT ID: Sybill
SAMPLE ID: S1-LAB-01
BATCH ID: BNA1025010

SAMPLE RECEIVED: 10/23/ SAMPLE TYPE: Liquid SAMPLER: sm

TRACE ID: CK248-04

EPA 1311/8270 TCLP WASTE DILUTION RESULT REPORTING LIMIT **SEMI-VOLATILE ORGANICS** mg/L mg/L 25 Pyridine U 25 2-Methylphenol U 25 3/4-Methylphenol U Hexachloroethane 25 U 25 Nitrobenzene u Hexachloro-1,3-butadiene U 25 25 2,4,6-Trichlorophenol U 2,4,5-Trichlorophenol 25 U 2,4-Dinitrotoluene 25 U 25 Hexachlorobenzene U 25 Pentachlorophenol U SURROGATE PERFORMANCE **RECOVERY % CONTROL LIMIT %** 2-Fluorophenol 88 70 130 Phenol-d5 70 130 79 Nitrobenzene-d5 83 70 130 2-Fluorobiphenyl 97 70 130 2,4,6-Tribromophenol 70 130 55 p-Terphenyl-d14 90 70 130

^{*} One of the acid surrogate recoveries was outside the control limits. Since the other two acid surrogates were within the control limits, no data requires qualification.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-LAB-02 BATCH ID: BNA102801W

TRACE ID: CK248-05 REPORT DATE: 11/04/02 ANALYSIS DATE: 10/31/02 EXTRACTION DATE: 10/28/02 ANALYST: avl D.L. MULTIPLIER:

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid SAMPLER: sm

EPA 1311/8270 TCLP SEMI-VOLATILE ORGANICS	RESULT mg/L	REPORTING LIMIT mg/L
Pyridine	U	0.10
2-Methylphenol	U	0.10
3/4-Methylphenol	U	0.10
Hexachloroethane	U	0.10
Nitrobenzene	U	0.10
Hexachloro-1,3-butadiene	U	0.10
2,4,6-Trichlorophenol	U	0.10
2,4,5-Trichlorophenol	U	0.10
2,4-Dinitrotoluene	U	0.10
Hexachlorobenzene	U	0.10
Pentachlorophenol	U	0.25
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	63	22 - 63
Phenol-d5	39	16 - 45
Nitrobenzene-d5	93	32 - 125
2-Fluorobiphenyl	96	33 - 115
2,4,6-Tribromophenol	77	25 - 122
p-Terphenyl-d14	90	62 - 112

Through 11/102

> TRACE ID: CK248-07 REPORT DATE: 11/04/02 ANALYSIS DATE: 10/30/02

SAMPLE TYPE: Liquid SAMPLER: sm

Ms. Linda Korobka **EXTRACTION DATE:** 10/25/02 Weston Solutions Inc. ANALYST: avl D.L. MULTIPLIER: SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 CLIENT ID: Sybill SAMPLE ID: S1-LAB-05 BATCH ID: BNA1025010

EPA 1311/8270 TCLP WASTE DILUTION SEMI-VOLATILE ORGANICS	RESULT mg/L	REPORTING LIMIT mg/L
Pyridine	U	25
2-Methylphenol	U	25
3/4-Methylphenol	U	25
Hexachloroethane	U	25
Nitrobenzene	U	25
Hexachloro-1,3-butadiene	U	25
2,4,6-Trichlorophenol	U	25
2,4,5-Trichlorophenol	U	25
2,4-Dinitrotoluene	U	25
Hexachlorobenzene	U	25
Pentachlorophenol	U	25
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	88	70 - 130
Phenol-d5	77	70 - 130
Nitrobenzene-d5	81	70 - 130
2-Fluorobiphenyl	96	70 - 130
2,4,6-Tribromophenol	* 57	70 - 130
p-Terphenyl-d14	88	70 - 130

^{*} One of the acid surrogate recoveries was outside the control limits. Since the other two acid surrogates were within the control limits, no data requires qualification.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TOT-02 BATCH ID: BNA1025010

TRACE ID: CK248-10 REPORT DATE: 11/04/02

ANALYSIS DATE: 10/31/02 EXTRACTION DATE: 10/25/02

XTRACTION DATE: 10/25/02 ANALYST: avl

D.L. MULTIPLIER: 10

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil

SAMPLER: sm

EPA 8270 MASS SPECTROMETRY EMI-VOLATILE ORGANICS WASTE DILUTION TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	250
2-Chlorophenol	U	250
Phenol	U	250
1,3-Dichlorobenzene	U	250
1,4-Dichlorobenzene	U	250
1,2-Dichlorobenzene	U	250
Benzyl alcohol	U	250
bis(2-Chloroisopropyl)ether	U	250
2-Methylphenol	U	250
3/4-Methylphenol	U	250
N-Nitroso-di-n-propylamine	U	250
Hexachloroethane	U	250
Nitrobenzene	Ü	250
lsophoron e	U	250
2-Nitrophenol	U	250
2,4-Dimethylphenol	U	250
bis(2-Chloroethoxy)methane	U	250
Benzoic acid	U	500
1,2,4-Trichlorobenzene	U	250
2,4-Dichlorophenol	U	250
Naphthalene	37000	2500
4-Chloroaniline	U	250
Hexachloro-1,3-butadiene	U	250
4-Chloro-3-methylphenol	U	250
2-Methylnaphthalene	130000	5000
Hexachlorocyclopentadiene	U	500
2,4,6-Trichlorophenol	U	250
2,4,5-Trichlorophenol	U	250
2-Chloronaphthalene	U	250
2-Nitroaniline	U	250
Dimethylphthalate	U	250
Acenaphthylene	U	250
2,6-Dinitrotoluene	Ū	250
3-Nitroaniline	u	250
Acenaphthene	3600	250
Dibenzofuran	U	250
2,4-Dinitrotoluene	U	250
4-Nitrophenol	U	2000
2,4-Dinitrophenol	U	2000
Diethylphthalate	U	250
Fluorene	1700	250

Assurance Accuracy Accountability

CLIENT: Weston Solutions Inc.

TRACE ID: CK248-10

PAGE 2

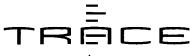
PA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
4-Chlorophenyl-phenylether	U	25
4-Nitroaniline	U	25
4,6-Dinitro-2-methylphenol	U	50
N-Nitrosodiphenylamine	U	25
4-Bromophenyl-phenylether	U	25
Hexachlorobenzene	U	25
Pentachlorophenol	U	50
<u>Phenanthrene</u>	1300	25
Anthracene	U	25
Carbazole	U	25
Di-n-butylphthalate	U	25
Fluoranthene	U	25
Pyrene	Ü	25
Butylbenzylphthalate	U	25
Benzo(a)anthracene	U	25
Chrysene	U	25
3,3'-Dichlorobenzidine	U	25
bis(2-Ethylhexyl)phthalate	U	25
Di-n-octylphthalate	U	25
Benzo(b)fluoranthene	U	25
Benzo(k)fluoranthene	U	25
Benzo(a)pyrene	U	25
Indeno(1,2,3-cd)pyrene	U	25
Dibenzo(a,h)anthracene	U	25
Benzo(g,h,i)perylene	U	25
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	70 - 130
Phenol-d5	* NA	70 - 130
Nitrobenzene-d5	* NA	70 - 130
2-Fluorobiphenyl	* NA	70 - 130
2,4,6-Tribromophenol	* NA	70 - 130
p-Terphenyl-d14	* NA	70 - 130

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

I landino

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TOT-02DP


BNA1025010

BATCH ID:

TRACE ID: CK248-11
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/25/02
ANALYST: avi
D.L. MULTIPLIER: 10
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

PA 8270 MASS SPECTROMETRY MI-VOLATILE ORGANICS WASTE DILUTION TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	250
2-Chlorophenol	U	250
Phenol	U	250
1,3-Dichlorobenzene	U	250
1,4-Dichlorobenzene	U	250
1,2-Dichlorobenzene	U	250
Benzyl alcohol	U	250
bis(2-Chloroisopropyl)ether	U	250
2-Methylphenol	U	250
3/4-Methylphenol	U	250
N-Nitroso-di-n-propylamine	U	250
Hexachloroethane	Ü	250
Nitrobenzene	Ū	250
Isophorone	Ü	250
2-Nitrophenol	U	250
2,4-Dimethylphenol	Ū	250
bis(2-Chloroethoxy)methane	U	250
Benzoic acid	Ú	500
1,2,4-Trichlorobenzene	Ŭ	250
2,4-Dichlorophenol	Ŭ	250
Naphthalene	38000	2500
4-Chloroaniline	Ü	250
Hexachloro-1,3-butadiene	ŭ	250
4-Chloro-3-methylphenol	ŭ	250
2-Methylnaphthalene	140000	5000
Hexachlorocyclopentadiene	U	500
2,4,6-Trichlorophenol	Ŭ	250
2,4,5-Trichlorophenol	Ü	250 250
2-Chloronaphthalene	<u>U</u>	250
2-Nitroaniline	Ü	250
Dimethylphthalate	Ü	250 250
Acenaphthylene	Ŭ	250 250
2,6-Dinitrotoluene	U	250
3-Nitroaniline	U	250 250
Acenaphthene	3700	250 250
Dibenzofuran	<u>U</u>	250
2,4-Dinitrotoluene		250
4-Nitrophenol	U	2000
2,4-Dinitrophenol	U	2000
Diethylphthalate	U	250
Fluorene	1700	250

CLIENT: Weston Solutions Inc.

TRACE ID: CK248-11

PAGE 2

EPA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
4-Chlorophenyl-phenylether	U	250
4-Nitroaniline	ū	250
4,6-Dinitro-2-methylphenol	ū	500
N-Nitrosodiphenylamine	Ũ	25
4-Bromophenyl-phenylether	Ū	250
Hexachlorobenzene	ũ	250
Pentachlorophenol	Ū	500
Phenanthrene	1300	25
Anthracene	Ū	250
Carbazole	Ũ	250
Di-n-butylphthalate	ŭ	250
Fluoranthene	Ū	250
Pyrene	Ü	250
Butylbenzylphthalate	Ū	250
Benzo(a)anthracene	Ü	250
Chrysene	· Ŭ	250
3,3'-Dichlorobenzidine	Ū	250
bis(2-Ethylhexyl)phthalate	Ü	250
Di-n-octylphthalate	U	250
Benzo(b)fluoranthene	Ū	250
Benzo(k)fluoranthene	Ū	250
Benzo(a)pyrene	U	250
Indeno(1,2,3-cd)pyrene	Ū	250
Dibenzo(a,h)anthracene	Ū	250
Benzo(g,h,i)perylene	U	250
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	70 - 13 0
Phenol-d5	* NA	70 - 130
Nitrobenzene-d5	* NA	70 - 130
2-Fluorobiphenyl	* NA	70 - 13 0
2,4,6-Tribromophenol	.* NA	70 - 130
p-Terphenyl-d14	* NA	70 - 13 0

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

J. Karther

Accountability

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TA2-01 BATCH ID: BNA1025010

TRACE ID: CK248-12
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/30/02
EXTRACTION DATE: 10/25/02
ANALYST: avl
D.L. MULTIPLIER: 10
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil
SAMPLETYPE: sm

A 8270 MASS SPECTROMETRY I-VOLATILE ORGANICS WASTE DILUTION FARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	250
2-Chlorophenol	U	250
Phenol	U	250
1,3-Dichlorobenzene	U	250
1,4-Dichlorobenzene	Ū	250
1,2-Dichlorobenzene	U	250
Benzyl alcohol	U	250
bis(2-Chloroisopropyl)ether	U	250
2-Methylphenol	U	250
3/4-Methylphenol	U	250
N-Nitroso-di-n-propylamine	U	250
Hexachloroethane	<u>U</u>	250
Nitrobenzene	U	250
Isophorone	U	250
2-Nitrophenol	U	250
2,4-Dimethylphenol	U	250
bis(2-Chloroethoxy)methane	U	250
Benzoic acid	U	500
1,2,4-Trichlorobenzene	U	250
2,4-Dichlorophenol	<u> </u>	250
Naphthalene	U	250
4-Chloroaniline	U	250
Hexachloro-1,3-butadiene	U	250
4-Chloro-3-methylphenol	Ų	250
2-Methylnaphthalene	Ü	250
Hexachlorocyclopentadiene	U	500
2,4,6-Trichlorophenol	U	250
2,4,5-Trichlorophenol	<u> </u>	250
2-Chloronaphthalene	U	250
2-Nitroaniline	U	250
Dimethylphthalate	U	250
Acenaphthylene	U	250
2,6-Dinitrotoluene	U	250
3-Nitroaniline	U	250
Acenaphthene	U	250
Dibenzofuran	U	250
2,4-Dinitrotoluene	Ū	250
4-Nitrophenol	U	2000
2,4-Dinitrophenol	U	2000
Diethylphthalate	U	250
Fluorene	U	250

Thrubblion 1

CLIENT: Weston Solutions Inc. TRACE ID: CK248-12

Accountability

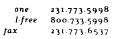
PAGE 2

EPA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS	RESULT	REPORTING LIMIT
TARGET COMPOUND LIST	mg/kg	mg/kg
4-Chlorophenyl-phenylether	U	250
4-Nitroaniline	U	250
4,6-Dinitro-2-methylphenol	U	500
N-Nitrosodiphenylamine	U	25
4-Bromophenyl-phenylether	U	250
Hexachlorobenzene	U	250
Pentachlorophenol	U	500
Phenanthrene	U	25
Anthracene	U	250
Carbazole	U	250
Di-n-butylphthalate	U	250
Fluoranthene	U	250
Pyrene	Ū	250
Butylbenzyiphthalate	U	250
Benzo(a)anthracene	U	250
Chrysene	<u> </u>	250
3,3'-Dichlorobenzidine	U	250
bis(2-Ethylhexyl)phthalate	Ü	250
Di-n-octylphthalate	Ų	250
Benzo(b)fluoranthene	<u>U</u>	250
Benzo(k)fluoranthene	Ü	250
Benzo(a)pyrene	Ņ	250
Indeno(1,2,3-cd)pyrene	<u>u</u>	250
Dibenzo(a,h)anthracene	Ų	250
Benzo(g,h,i)perylene	U	250
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	70 - 130
Phenol-d5	* NA	70 - 130
Nitrobenzene-d5	* NA	70 - 130
2-Fluorobiphenyl	* NA	70 - 130
2,4,6-Tribromophenol	* NA	70 - 130
p-Terphenyl-d14	* NA	70 - 130

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

Accuracy Accountability

Ms. Linda Korobka Weston Solutions Inc.


CLIENT ID: Sybill SAMPLE ID: \$1-TA2-02 BNA1025010 BATCH ID:

TRACE ID: CK248-13 REPORT DATE: 11/04/02 ANALYSIS DATE: 10/30/02 **EXTRACTION DATE:** 10/25/02 ANALYST: avl D.L. MULTIPLIER: 20 SAMPLE DATE: 10/22/02 SAMPLE RECEIVED:

SAMPLE TYPE: Oil SAMPLER: sm

10/23/02

MI-VOLATILE ORGANICS WASTE DILUTION TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	500
2-Chlorophenol	U	500
Phenol	U	500
1,3-Dichlorobenzene	U	500
1,4-Dichlorobenzene	U	500
1,2-Dichlorobenzene	U	500
Benzyl alcohol	U	500
bis(2-Chloroisopropyl)ether	U	500
2-Methylphenol	U	500
3/4-Methylphenol	U	500
N-Nitroso-di-n-propylamine	U	500
Hexachloroethane	U	500
Nitrobenzene	U	500
Isophorone	U	500
2-Nitrophenol	U	500
2,4-Dimethylphenol	<u>U</u>	500
bis(2-Chloroethoxy)methane	U	500
Benzoic acid	U	1000
1,2,4-Trichlorobenzene	U	500
2,4-Dichlorophenol	U	500
Naphthalene	U	250
4-Chloroaniline	U	500
Hexachloro-1,3-butadiene	U	500
4-Chloro-3-methylphenol	U	500
2-Methylnaphthalene	U	250
Hexachlorocyclopentadiene	U	1000
2,4,6-Trichlorophenol	Ü	500
2,4,5-Trichlorophenol	U	500
2-Chloronaphthalene	U	500
2-Nitroaniline	U	500
Dimethylphthalate	U	500
Acenaphthylene	U	500
2,6-Dinitrotoluene	U	500
3-Nitroaniline	Ų	500
Acenaphthene	U	500
Dibenzofuran	<u>U</u>	500
2,4-Dinitrotoluene	Ų	500
4-Nitrophenol	U	4000
2,4-Dinitrophenol	U	4000
Diethylphthalate	U	500
Fluorene	U	500

Accuracy Accountability

CLIENT: Weston Solutions Inc.

TRACE ID: CK248-13

PAGE 2

EPA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
4-Chlorophenyl-phenylether	U	500
4-Nitroaniline	υ	500
4,6-Dinitro-2-methylphenol	ប	1000
N-Nitrosodiphenylamine	Ü	50
4-Bromophenyl-phenylether	U	500
Hexachlorobenzene	U	500
Pentachlorophenol	U	1000
Phenanthrene	<u>U</u>	50
Anthracene	U	500
Carbazole	U	500
Di-n-butylphthalate	U	500
Fluoranthene	U	500
Pyrene	U	500
Butylbenzylphthalate	บ	500
Benzo(a)anthracene	U	500
Chrysene	U	500
3,3'-Dichlorobenzidine	Ü	500
bis(2-Ethylhexyl)phthalate	U	500
Di-n-octylphthalate	U	500
Benzo(b)fluoranthene	<u> </u>	500
Benzo(k)fluoranthene	U	500
Benzo(a)pyrene	U	500
Indeno(1,2,3-cd)pyrene	U	500
Dibenzo(a,h)anthracene	U	500
Benzo(g,h,i)perylene	· U	500
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	70 - 130
Phenol-d5	* NA	70 - 130
Nitrobenzene-d5	* NA	70 - 130
2-Fluorobiphenyl	* NA	70 - 130
2,4,6-Tribromophenol	* NA	70 - 130
p-Terphenyl-d14	* NA	70 - 130

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

Handler Jan

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-CLA-01 BATCH ID: BNA1025010

TRACE ID: CK248-14
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/30/02
EXTRACTION DATE: 10/25/02
ANALYST: avl

D.L. MULTIPLIER: 10
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02
SAMPLE TYPE: Oil

IPLE TYPE: Oil SAMPLER: sm

PA 8270 MASS SPECTROMETRY MI-VOLATILE ORGANICS WASTE DILUTION TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	250
2-Chlorophenol	U	250
Phenol	Ū	250
1,3-Dichlorobenzene	U	250
1,4-Dichlorobenzene	U	250
1,2-Dichlorobenzene	U	250
Benzyl alcohol	U	250
bis(2-Chloroisopropyl)ether	Ū	250
2-Methylphenol	Ü	250
3/4-Methylphenol	Ú	250
N-Nitroso-di-n-propylamine	Ū	250
Hexachloroethane	Ū	250
Nitrobenzene	Ü	250
Isophorone	Ú	250
2-Nitrophenol	Ü	250
2,4-Dimethylphenol	U	250
bis(2-Chloroethoxy)methane	Ū	250
Benzoic acid	U	500
1,2,4-Trichlorobenzene	Ū	250
2,4-Dichlorophenol	Ū	250
Naphthalene	Ū	250
4-Chloroaniline	Ū	250
Hexachloro-1,3-butadiene	U	250
4-Chloro-3-methylphenol	Ū	250
2-Methylnaphthalene	Ū	250
Hexachlorocyclopentadiene	Ū	500
2,4,6-Trichlorophenol	ŭ	250
2,4,5-Trichlorophenol	Ū	250
2-Chloronaphthalene	Ū	250
2-Nitroaniline	Ü	250
Dimethylphthalate	Ū	250
Acenaphthylene	Ū	250
2,6-Dinitrotoluene	Ū	250
3-Nitroaniline	Ū	250
Acenaphthene	Ŭ	250
Dibenzofuran	Ü	250
2,4-Dinitrotoluene	<u>J</u>	250
4-Nitrophenol	Ŭ	2000
2,4-Dinitrophenol	Ü	2000
Diethylphthalate	Ü	250
Fluorene	U	250

Thank

Accuracy Accountability

CLIENT: Weston Solutions Inc. TRACE ID: CK248-14

PAGE 2

EPA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
4-Chlorophenyl-phenylether	U	250
4-Nitroaniline	ŭ	250
4,6-Dinitro-2-methylphenol	Ū	500
N-Nitrosodiphenylamine	U	25
4-Bromophenyl-phenylether	U	250
Hexachlorobenzene	U	250
Pentachlorophenol	U	500
Phenanthrene	U	25
Anthracene	U	250
Carbazole	U	250
Di-n-butylphthalate	U	250
Fluoranthene	U	250
Pyrene	U	250
Butylbenzylphthalate	U	250
Benzo(a)anthracene	U	250
Chrysene	U	250
3,3'-Dichlorobenzidine	U	250
bis(2-Ethylhexyl)phthalate	U	250
Di-n-octylphthalate	U	250
Benzo(b)fluoranthene	U	250
Benzo(k)fluoranthene	U	250
Benzo(a)pyrene	U	250
Indeno(1,2,3-cd)pyrene	U	250
Dibenzo(a,h)anthracene	Ü	250
Benzo(g,h,i)perylene	U	250
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	70 - 130
Phenol-d5	* NA	70 - 130
Nitrobenzene-d5	* NA	70 - 13 0
2-Fluorobiphenyl	* NA	70 - 130
2,4,6-Tribromophenol	* NA	70 - 13 0
p-Terphenyl-d14	* NA	70 - 130

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-ASH-01 BATCH ID: BNA1025010

TRACE ID: CK248-15
REPORT DATE: 11/04/02
ANALYSIS DATE: 10/31/02
EXTRACTION DATE: 10/25/02
ANALYST: avi
D.L. MULTIPLIER: 20

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Oil SAMPLER: sm

EPA 8270 MASS SPECTROMETRY EMI-VOLATILE ORGANICS WASTE DILUTION TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	500
2-Chlorophenol	U	500
Phenol	U	500
1,3-Dichlorobenzene	U	500
1,4-Dichlorobenzene	U	500
1,2-Dichlorobenzene	U	500
Benzyl alcohol	U	500
bis(2-Chloroisopropyl)ether	U	500
2-Methylphenol	U	500
3/4-Methylphenol	U	500
N-Nitroso-di-n-propylamine	U	500
Hexachloroethane	U	500
Nitrobenzene	Ų	500
Isophorone	U	500
2-Nitrophenol	U	500
2,4-Dimethylphenol	U	500
bis(2-Chloroethoxy)methane	U	500
Benzoic acid	U	1000
1,2,4-Trichlorobenzene	U	500
2,4-Dichlorophenol	U	500
Naphthalene	U	500
4-Chloroaniline	U	500
Hexachloro-1,3-butadiene	U	500
4-Chloro-3-methylphenol	U	500
2-Methylnaphthalene	U	500
Hexachlorocyclopentadiene	U	1000
2,4,6-Trichlorophenol	Ü	500
2,4,5-Trichlorophenol	Ŭ	500
2-Chloronaphthalene	Ü	500
2-Nitroaniline	Ũ	500
Dimethylphthalate	Ũ	500
Acenaphthylene	Ŭ	500
2,6-Dinitrotoluene	-	500
3-Nitroaniline	ŭ	500
Acenaphthene	ŭ	500
Dibenzofuran	Ŭ	500
2,4-Dinitrotoluene	<u> </u>	500
4-Nitrophenol	Ü	4000
2,4-Dinitrophenol	Ü	4000
Diethylphthalate	Ü	500
Fluorene	Ü	500
riudiene	U	200

CLIENT: Weston Solutions Inc.

TRACE ID: CK248-15

PAGE 2

EPA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol	U U U	500 500 1000
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol	U U U U	50 500 500 1000
Phenanthrene Anthracene Carbazole Di-n-butylphthalate	<u>U</u> U U	50 500 500 500
Fluoranthene Pyrene Butylbenzylphthalate Benzo(a)anthracene	Ü U U	500 500 500 500 500
Chrysene 3,3'-Dichlorobenzidine bis(2-Ethylhexyl)phthalate	U U U	500 500 500
Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	U U U	500 500 500 500
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	U U U	500 500 500
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol p-Terphenyl-d14	* NA * NA * NA * NA * NA * NA	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

2 Completo

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-SCP-01 BATCH ID: BNA1025010

TRACE ID: CK248-16 11/04/02 REPORT DATE: ANALYSIS DATE: 10/31/02 **EXTRACTION DATE:** 10/25/02 ANALYST: avl D.L. MULTIPLIER: 20 SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE:

SAMPLER:

sm

8270 MASS SPECTROMETRY -VOLATILE ORGANICS WASTE DILUTION ARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
bis(2-Chloroethyl)ether	U	500
2-Chlorophenol	U	500
Phenol	U	500
1,3-Dichlorobenzene	U	500
1,4-Dichlorobenzene	U	500
1,2-Dichlorobenzene	U	500
Benzyl alcohol	U	500
bis(2-Chloroisopropyl)ether	U	500
2-Methylphenol	U	500
3/4-Methylphenol	U	500
N-Nitroso-di-n-propylamine	U	500
Hexachloroethane	U	500
Nitrobenzene	U	500
Isophorone	U	500
2-Nitrophenol	U	500
2,4-Dimethylphenol	<u> </u>	500
bis(2-Chloroethoxy)methane	U	500
Benzoic acid	U	1000
1,2,4-Trichlorobenzene	U	500
2,4-Dichlorophenol	U	500
Naphthalene	U	500
4-Chloroaniline	U	500
Hexachloro-1,3-butadiene	U	500
I-Chloro-3-methylphenol	U	500
2-Methylnaphthalene	U	500
Hexachlorocyclopentadiene	U	1000
2,4,6-Trichlorophenol	U	500
2,4,5-Trichlorophenol	U	500
2-Chloronaphthalene	Ū	500
2-Nitroaniline	U	500
Dimethylphthalate	U	500
Acenaphthylene	U	500
2,6-Dinitrotoluene	U	500
3-Nitroaniline	U	500
Acenaphthene	U	500
Dibenzofuran	U	500
2,4-Dinitrotoluene	Ü	500
4-Nitrophenol	U	4000
2,4-Dinitrophenol	U	4000
Diethylphthalate	U	500
Fluorene	U	500

CLIENT: Weston Solutions Inc.

TRACE ID: CK248-16

PAGE 2

EPA 8270 MASS SPECTROMETRY SEMI-VOLATILE ORGANICS TARGET COMPOUND LIST	RESULT mg/kg	REPORTING LIMIT mg/kg
4-Chlorophenyl-phenylether	U	500
4-Nitroaniline	ŭ	500
4,6-Dinitro-2-methylphenol	ŭ	1000
N-Nitrosodiphenylamine	ŭ	50
4-Bromophenyl-phenylether	U	500
Hexachlorobenzene	Ú	500
Pentachlorophenol	U	1000
Phenanthrene	Ú	50
Anthracene	Ü	500
Carbazole	U	500
Di-n-butylphthalate	U	500
Fluoranthene	U	500
Pyrene	Ú	500
Butylbenzylphthalate	U	500
Benzo(a)anthracene	U	500
Chrysene	U	500
3,3'-Dichlorobenzidine	Ü	500
bis(2-Ethylhexyl)phthalate	U	500
Di-n-octylphthalate	U	500
Benzo(b)fluoranthene	U	500
Benzo(k)fluoranthene	U	500
Benzo(a)pyrene	U	500
Indeno(1,2,3-cd)pyrene	ü	500
Dibenzo(a,h)anthracene	Ų	500
Benzo(g,h,i)perylene	U	500
SURROGATE PERFORMANCE	RECOVERY %	CONTROL LIMIT %
2-Fluorophenol	* NA	70 - 130
Phenol-d5	* NA	70 - 130
Nitrobenzene-d5	* NA	70 - 130
2-Fluorobiphenyl	* NA	70 - 130
2,4,6-Tribromophenol	* NA	70 - 13 0
p-Terphenyl-d14	* NA	70 - 130

^{*} A dilution of 1:10 or greater was required on this sample. Consequently, surrogate recoveries are not available.

231.773.5998 Trace Analytical 800.733.5998 2241 Black Creek 231.773.6537 Muskegon, MI 49

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 www.trace-labs.com

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-DRM-01

TRACE ID: CK248-01

REPORT DATE: 11/11/02

ANALYST: ms/eh SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Solid

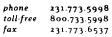
SAMPLER: sm

TCLP METALS	BATCH ID	DIGESTION DATE	RESULT μ g /L	REPORTING LIMIT μg/L	ANALYZED	METHOD NUMBER
Silver	MIC102801W	10/28/02	U	100	11/01/02	EPA 1311/6010
Arsenic	MIC102801W	10/28/02	U	300	10/29/02	EPA 1311/6010
Barium	MIC102801W	10/28/02	U	1000	10/29/02	EPA 1311/6010
Cadmium	MIC102801W	10/28/02	U	100	10/29/02	EPA 1311/6010
Chromium	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Lead	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Selenium	MIC102801W	10/28/02	U	600	10/29/02	EPA 1311/6010
Mercury	MER102802W	10/28/02	U	10	10/29/02	EPA 1311/7470

Throughor Malor

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TOT-01


TRACE ID: CK248-02 REPORT DATE: 11/11/02

ANALYST: ms/eh SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Liquid

SAMPLER: sm

TCLP METALS	BATCH ID	DIGESTION DATE	RESULT μg/L	REPORTING LIMIT µg/L	ANALYZED	METHOD NUMBER
Silver	MIC102801W	10/28/02	U	100	11/01/02	EPA 1311/6010
Arsenic	MIC102801W	10/28/02	U	300	10/29/02	EPA 1311/6010
Barium	MIC102801W	10/28/02	U	1000	10/29/02	EPA 1311/6010
Cadmium	MIC102801W	10/28/02	U	100	10/29/02	EPA 1311/6010
Chromium	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Lead	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Selenium	MIC102801W	10/28/02	U	600	10/29/02	EPA 1311/6010
Mercury	MER102802W	10/28/02	Ū	10	10/29/02	EPA 1311/7470

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TOT-01DP

TRACE ID: CK248-03
REPORT DATE: 11/11/02
ANALYST: ms/eh
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid SAMPLER: sm

TCLP METALS	BATCH ID	DIGESTION DATE	RESULT μg/L	REPORTING LIMIT µg/L	ANALYZED	METHOD NUMBER
Silver	MIC102801W	10/28/02	U	100	11/01/02	EPA 1311/6010
Arsenic	MIC102801W	10/28/02	U	300	10/29/02	EPA 1311/6010
Barium	MIC102801W	10/28/02	U	1000	10/29/02	EPA 1311/6010
Cadmium	MIC102801W	10/28/02	U	100	10/29/02	EPA 1311/6010
Chromium	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Lead	MIC102801W	10/28/02	Ü	500	10/29/02	EPA 1311/6010
Selenium	MIC102801W	10/28/02	U	600	10/29/02	EPA 1311/6010
Mercury	MER102802W	10/28/02	U	10	10/29/02	EPA 1311/7470

J Kindol

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-LAB-01

TRACE ID: CK248-04

REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAMPLER: sm

TCLP METALS	BATCH ID	DIGESTION DATE	RESULT μg/L	REPORTING LIMIT µg/L	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 1311/7761
Arsenic	MIC103002S	10/30/02	U	* 200	11/07/02	EPA 1311/7060
Barium	MIC103002S	10/30/02	U	1000	11/05/02	EPA 1311/6010
Cadmium	MIC103002S	10/30/02	U	50	11/07/02	EPA 1311/7131
Chromium	MIC103002S	10/30/02	U	* 88 0	11/05/02	EPA 1311/6010
Lead	MIC103002S	10/30/02	U	1000	11/07/02	EPA 1311/7421
Selenium	MIC103002S	10/30/02	U	* 4 00	11/07/02	EPA 1311/7740
Mercury	MIC103002S	10/30/02	U	** 200	11/08/02	EPA 1311/7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Herebino2

^{*} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-LAB-02

TRACE ID: CK248-05

REPORT DATE: 11/11/02

ANALYST: ms/eh

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAMPLER: sm

TCLP METALS	BATCH ID	DIGESTION DATE	RESULT μg/L	REPORTING LIMIT μg/L	ANALYZED	METHOD NUMBER
Silver	MIC102801W	10/28/02	U	100	11/01/02	EPA 1311/6010
Arsenic	MIC102801W	10/28/02	U	300	10/29/02	EPA 1311/6010
Barium	MIC102801W	10/28/02	U	1000	10/29/02	EPA 1311/6010
Cadmium	MIC102801W	10/28/02	U	100	10/29/02	EPA 1311/6010
Chromium	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Lead	MIC102801W	10/28/02	U	500	10/29/02	EPA 1311/6010
Selenium	MIC102801W	10/28/02	Ü	600	10/29/02	EPA 1311/6010
Mercury	MER102802W	10/28/02	U	10	10/29/02	EPA 1311/7470

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-LAB-05

TRACE ID: CK248-07 REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Liquid

SAMPLER: sm

TCLP METALS	BATCH ID	DIGESTION DATE	RESULT μg/L	REPORTING LIMIT μg/L	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 1311/7761
Arsenic	MIC103002S	10/30/02	Ü	* 200	11/07/02	EPA 1311/7060
Barium	MIC103002S	10/30/02	Ü	1000	11/05/02	EPA 1311/6010
Cadmium	MIC103002S	10/30/02	U	50	11/07/02	EPA 1311/7131
Chromium	MIC103002S	10/30/02	Ū	* 880	11/05/02	EPA 1311/6010
Lead	MIC103002S	10/30/02	Ū	1000	11/07/02	EPA 1311/7421
Selenium	MIC103002S	10/30/02	Ŭ	* 400	11/07/02	EPA 1311/7740
Mercury	MIC103002S	10/30/02	Ü	** 200	11/08/02	EPA 1311/7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Thought Italian

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

phone toll free fax 231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 www.trace-labs.com

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TOT-02

TRACE ID: CK248-10

REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Oil

SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	U	* 200	11/07/02	EPA 7060
Barium	MIC103002S	10/30/02	U	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	U	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	U	* 880	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	U	1000	11/07/02	EPA 7421
Selenium	MIC103002S	10/30/02	U	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	U	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Harvilla o

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TOT-02DP

TRACE ID: CK248-11
REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	U	* 200	11/07/02	EPA 7060
Barium	MIC103002S	10/30/02	U	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	U	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	U	* 870	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	U	1000	11/07/02	EPA 7421
Selenium	MIC103002S	10/30/02	U	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	U	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Jewallalor

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TA2-01

TRACE ID: CK248-12

REPORT DATE: 11/11/02

ANALYST: ms/sd SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil

SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	15000	* 1400	11/05/02	EPA 6010
Barium	MIC103002S	10/30/02	36000	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	170	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	7300	* 860	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	12000	* 1300	11/05/02	EPA 6010
Selenium	MIC103002S	10/30/02	U	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	U	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Jean Jalon

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-TA2-02

TRACE ID: CK248-13

REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil

SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	850	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	26000	* 1400	11/05/02	EPA 6010
Barium	MIC103002S	10/30/02	140000	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	290	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	35000	* 880	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	35000	* 1400	11/05/02	EPA 6010
Selenium	MIC103002S	10/30/02	IJ	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	U	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-CLA-01 TRACE ID: CK248-14

REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED: 10/23/02 SAMPLE TYPE: Oil

SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	230	* 200	11/07/02	EPA 7060
Barium	MIC103002S	10/30/02	2900	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	U	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	3000	* 870	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	5900	* 1300	11/05/02	EPA 6010
Selenium	MIC103002S	10/30/02	Ū	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	U	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-ASH-01

TRACE ID: CK248-15 REPORT DATE: 11/11/02 ANALYST: ms/sd

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	1200	* 200	11/07/02	EPA 7060
Barium	MIC103002S	10/30/02	13000	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	210	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	6300	* 880	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	14000	* 1400	11/05/02	EPA 6010
Selenium	MIC103002S	10/30/02	U	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	Ū	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

J know

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill SAMPLE ID: S1-SCP-01

TRACE ID: CK248-16

REPORT DATE: 11/11/02

ANALYST: ms/sd

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Oil

SAMPLER: sm

TOTAL METALS	BATCH ID	DIGESTION DATE	RESULT μg/kg	REPORTING LIMIT μg/kg	ANALYZED	METHOD NUMBER
Silver	MIC103002S	10/30/02	U	500	11/07/02	EPA 7761
Arsenic	MIC103002S	10/30/02	1200	* 200	11/07/02	EPA 7060
Barium	MIC103002S	10/30/02	150000	1000	11/05/02	EPA 6010
Cadmium	MIC103002S	10/30/02	1200	50	11/07/02	EPA 7131
Chromium	MIC103002S	10/30/02	35000	* 870	11/05/02	EPA 6010
Lead	MIC103002S	10/30/02	81000	* 1400	11/05/02	EPA 6010
Selenium	MIC103002S	10/30/02	U	* 400	11/07/02	EPA 7740
Mercury	MIC103002S	10/30/02	200	** 200	11/08/02	EPA 7471

^{*} Because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Jenel Maloi

^{**} The reporting limit was raised due to dilution and also because of the nature of the sample matrix, a smaller aliquot than usual was analyzed, resulting in a raised reporting limit.

Accountability

Ms. Linda Korobka Weston Solutions Inc. TRACE ID: CK248
REPORT DATE: 11/05/02
ANALYSIS DATE: 10/28/02
PREP DATE: 10/25/02
ANALYST: amc
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02
SAMPLE TYPE: Solid/Liquid

SAMPLER: sm

CLIENT ID: Sybill

BATCH ID: RCYD102501S

TRACE SAMPLE NO.	SAMPLE ID	REACTIVE CYANIDE mg/kg	REPORTING LIMIT mg/kg	METHOD NUMBER
SB102501	Method Blank	U	0.50	SW-846 Chpt 7/EPA 9012
01	S1-DRM-01	U	0.50	SW-846 Chpt 7/EPA 9012
02	S1-TOT-01	U	0.50	SW-846 Chpt 7/EPA 9012
03	S1-TOT-01DP	U	0.50	SW-846 Chpt 7/EPA 9012
04	S1-LAB-01	U	0.50	SW-846 Chpt 7/EPA 9012
05	S1-LAB-02	U	0.50	SW-846 Chpt 7/EPA 9012
07	S1-LAB-05	U	0.50	SW-846 Chpt 7/EPA 9012

Jknobl 19102

Accuracy Accountability

TRACE ID: CK248

REPORT DATE: 11/05/02

ANALYSIS DATE: 10/29/02

PREP DATE:

10/25/02

ANALYST: Ic

SAMPLE DATE: 10/22/02

SAMPLE RECEIVED:

10/23/02

SAMPLE TYPE:

Solid/Liquid

SAMPLER:

CLIENT ID: Sybill

Ms. Linda Korobka

Weston Solutions Inc.

BATCH ID: RCFD102501S

TRACE SAMPLE NO.	SAMPLE ID	REACTIVE SULFIDE mg/kg	REPORTING LIMIT mg/kg	METHOD NUMBER
SB102501	Method Blank	U	5.0	SW-846 Chpt 7/EPA 376.2
01	S1-DRM-01	U	5.0	SW-846 Chpt 7/EPA 376.2
02	S1-TOT-01	U	5.0	SW-846 Chpt 7/EPA 376 2
03	S1-TOT-01DP	U	5.0	SW-846 Chpt 7/EPA 376.2
04	S1-LAB-01	U	5.0	SW-846 Chpt 7/EPA 376.2
05	S1-LAB-02	Ü	5.0	SW-846 Chpt 7/EPA 376.2
07	S1-LAB-05	U	5.0	SW-846 Chpt 7/EPA 376.2

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 www.trace-labs.com

Ms. Linda Korobka Weston Solutions Inc.

CLIENT ID: Sybill

TRACE ID: CK248
REPORT DATE: 11/05/02
METHOD: EPA 1010

ANALYST: cr

SAMPLE DATE: 10/22/02 SAMPLE RECEIVED: 10/23/02

SAMPLE TYPE: Solid/Liquid

SAMPLER: sm

TRACE SAMPLE NO.	BATCH ID	SAMPLE ID	FLASH POINT	REPORTING LIMIT	ANALYZED
01	FP102801W	S1-DRM-01	>200° F	NA	10/28/02
02	FP102801W	S1-TOT-01	>200° F	NA	10/28/02
03	FP103101W	S1-TOT-01DP	140° F	NA	10/31/02
03 DUP	FP111301W	S1-TOT-01DP	>200° F	NA	11/13/02
04	FP103001W	S1-LAB-01	100° F	NA	10/30/02
05	FP110101W	S1-LAB-02	95° F	NA	11/01/02
07	FP103001W	S1-LAB-05	75° F	NA	10/30/02
10	FP103001W	S1-TOT-02	>200° F	NA	10/30/02
11	FP103101W	S1-TOT-02DP	>200° F	NA	10/31/02
12	FP103101W	S1-TA2-01	>200° F	NA	10/31/02
13	FP110101W	S1-TA2-02	>200° F	NA	11/01/02
14	FP110101W	S1-CLA-01	>200° F	NA	11/01/02
15	FP110101W	S1-ASH-01	70° F	NA	11/01/02
16	FP110101W	S1-SCP-01	170° F	NA	11/01/02

Jlandel Jakol

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 www.trace-labs.com

Ms. Linda Korobka Weston Solutions Inc. TRACE ID: CK248
REPORT DATE: 11/05/02
ANALYST: km
SAMPLE DATE: 10/22/02
SAMPLE RECEIVED: 10/23/02
SAMPLE TYPE: Solid/Liquid
SAMPLER: sm

CLIENT ID: Sybill

TRACE SAMPLE NO.	BATCH ID	SAMPLE ID	рН	REPORTING LIMIT	METHOD NUMBER	ANALYZED
01	PH102501S	S1-DRM-01	4.80	NA	EPA 9045	10/25/02
02	PH102501W	S1-TOT-01	6.54	NA	EPA 150.1	10/25/02
03	PH102501W	S1-TOT-01DP	7.38	NA	EPA 150.1	10/25/02
04	PH102501S	S1-LAB-01	3.88	NA	EPA 9045	10/25/02
05	PH102501S	S1-LAB-02	4.05	NA	EPA 9045	10/21/02
06	PH102501W	S1-LAB-04	0	NA	EPA 150.1	10/25/02
07	PH102501S	S1-LAB-05	4.01	NA	EPA 9045	10/25/02
80	PH102501S	S1-TAC-01	12.97	NA	EPA 9045	10/25/02
10	PH102901S	S1-TOT-02	6.69	NA	EPA 9045	10/29/02
11	PH102901S	S1-TOT-02DP	6.90	NA	EPA 9045	10/29/02
12	PH102901S	S1-TA2-01	4.59	NA	EPA 9045	10/29/02
13	PH102901S	S1-TA2-02	6.41	NA	EPA 9045	10/29/02
14	PH102901S	S1-CLA-01	4.38	NA	EPA 9045	10/29/02
15	PH102901S	S1-ASH-01	6.08	NA	EPA 9045	10/29/02
16	PH102901S	S1-SCP-01	7.96	NA	EPA 9045	10/29/02

June 19102

CT&E Environmental Services Inc.

November 6, 2002

Linda Korobka Weston Solutions, Inc. of Michigan 2501 Jolly Road Suite 100 Okemos, Michigan 48864

Sybill, Inc. Site – Total Halogens

(CT&E Lab ID 3025027)

Dear Ms. Korobka:

RE:

Enclosed are the results for the Total Halogen analyses for samples collected by Weston Solutions, Inc. of Michigan in support of the U.S. EPA START V Contract at the Sybill, Inc. Site in Detroit, Michigan.

1200 Conrad Industrial Drive

Ludington, MI 49431-2681

Tel: (231) 843-1877

Fax: (231) 845-9942

The samples were picked up on October 24, 2002 and received on October 25, 2002 at CT&E Environmental Services (CT&E-MI) in Ludington, Michigan. Upon receipt at CT&E-MI, the samples were logged as CT&E-MI Workorder No. 3025027.

Foilowing receipt at CT&E-MI, the samples were subcontracted to Commercial Testing & Engineering Co. in South Holland, Illinois (CT&E-IL) and results reported in Analysis Report No. 71-192507 through 71-192513.

A copy of the subcontractor laboratory report and supporting laboratory and quality control documentation is enclosed for your review.

Thank you for using CT&E Environmental Services. Please call me at (231) 843-1877 if you have any questions.

Sincerely,

Lidya Ğulizia

Project Manager

Udya Wiria

Enclosure:

CT&E-IL Analysis Report No. 71-192507 through 71-192513

CT&E-MI Chain-of-Custody Records (Lab ID 3025027)

projman\weston\3025027_THH LG 11/06/02

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

November 1, 2002

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAL SOUTH HOLLAND, IL 6047: TEL: (708) 331-290u FAX: (708) 333-3060 www.comteco.com

Sample identification by CT&E Environmental Services

Kind of sample

reported to us Liquid

Sample taken at 3025027-001

Sample taken by

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill Sample ID: S1-TOT-02

P.O. No. 109751

Analysis Report No.

71-192507

Page 1 of 1

As Received

TOTAL HALOGENS, ug/g

80 3

METHOD

Total Halogens: SW 846 Module Method 9253

Respectfully submitted.

COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

MEMBEF

Plea	Please Sign Sample Identification / Request for Analytical Services Report Results To:															4											
	1 Sulfact	Item RELEASED			7 8 10/2/12/43C	Short after of make I	5 Wallellaso	Sm/s/2/02	4 10/2/02/53	3 16/2/62 1515	2 10/20/02 1245	1 10/22/62/245	SAMPLE NO. DATE TAKEN TIME TAKEN	USACE Special	MERA TMDL'S RCRA	Regulatory Requirements	}	Project Name: SY	ddress:	517-3	City, State, Zip Code:	Mailing Address:	Ciletti Name: ///C	Client Name: 1417	Accuracy Accountability	מתית	
The Contract of the Contract o	Mr. The	ВУ	AS H	* TOUST &	51-	S1-A	51-04	ST-TE	SITA	S1-TA	51-707	51-701	METALS FIELD FILTERED	* Requires prior approval	Standard (2 wk) lady X	Turnaround Requirements		BILL PO		81-59	OKENICK W	$\frac{1}{2}$	SING KACIN	(24) (24)	/	phone 231.773.5998 toll-free 800.223-5998 fax 231.773.6537	CT'S
	Bur 10/23/02	RECEIVED BY DATE	A BAROUIS MA	MHENE REPORT	SCP-01	SH-01	LA-01 (MS/1	WS-20-24	2-02	2-01	-02 DP	-02	CLIENT SAMPLE ID	OI = Oil SO = Solid Waste	S = Soil W = Water	Matrix Key	Sampled by: SA	Trace Quote #:		415	· 1	1115		N/N 2/2	www.trace.		E h51/843-107+
1215/-	1245	TIME Item	MERIAL NER	DRIBBLE VALUE	01 X	× 1 10	X / 10/ (15/1)	01 /	X 1 10	0 - X	01 - ×	0) / ×	MATRIX NUMBER OF CONTAINERS		= Wipes Liquid Waste		PAH NIEYERS	* · · · · · · · · · · · · · · · · · · ·		921		7 100			om	ratories, Inc. 1673	- Wom 61
4) P.a. seedin.	3) Mart	RELEASED BY	ECOCOPY !	ES DO DOCUME				,					TOTAL	HALCE			AP	Volatiles Preserved: HCI	Preservative Checked: Y			Heceived on ice: Yes IN		Loaged Bv:		CHAÎN-OF-CUSTODY RECORD AND WORK AUTHORIZATION	CN, AII
Show CTE		RECEIVED BY	1864UATIONS	ALT MATTERIA													ANALYSIS REQUESTED	MeOH En Care Ino Low	Yes No			No Cooler lemp ('C)		Checked By:		DY RECORD HORIZATION	1
pase-a		DATE	*		-						Sammable, 1	Flammoble: PID	m					LAW Level 3 2002			707	S			Page/	TRACE ID NO.	
850mg		TIME									P10=10ppin	PID = 10 PPM	7	le Health	Hazard		<u>֓֞֞</u>			5				į	of /	NO.	

Chain of Custody

AL.

CT&E Environmental Services Inc.

Workorder				<u> </u>	Michigan D							49431-	268:			_							
ECT+E-MI	3025027]				Phone: 23										1	<u>D</u>	#=	159	75	51			
Results To: CT+E E	UV. Services	Project N	lame	i. 1	l					Tes	t Meth	ods		0			Во	ttle C	ommo	ents	/D	אני אני)
Attention: Telephone FAX? Yes No Fax # Invoice To: SAME	REQUIR Sampled Work Au	thich samp ED COMF by: thorization the authorization this form	PLETIC SW n Signa es CT&E and ack	DN DATE ature: to perform nowledges t	the work	and	-n sens	Sout Caloumetry)						٥	انہ	5 305 301 101 101 105	1-1 Rov	CLI 1. L	A-E CELAN COC.) 1 (1	ASS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Telephone #				Comp		Drinking	Fied	on !	(By B	-				pH									
Sample No. Client Sample ID	Sampling Location	Date	Time	Grab C/G	Sample Matrix	Water Y/N	Filtered Y / N	17				ſ		No of B	40 mt Via	1L Ambe	250ml Pj	500mi Pl	۱ Pi	2oz gl	4cz gi	Boz g	Other
51-TOT-02 SI-TOT-02DP	3025027-001	10.22.02	1245		Liq			H		-				-									
SI - TAZ -DI SI - TAZ - DZ	003		1515 1535																				
51 - CLA - DI	005		1610																				
51 - 1284-01 51 - 568-01	006	1	1430		1			7		\pm													
										-	-												
elinquished by	Date / Time (am / pm)		Relinguished	by				Date / *	me (agn .	/ pm)	1702	Relingu	hed by						Date /	Time (an	n / pm;		
Project Corffinents:	Date / Time (am / pm) 10"25-02-90	Received by Dat							24 a me (am		Tor		CLAL attabor Bo			TE	<u> </u>			ジシマ Time (an 28つこ			
Project Corffinents:												V				<u></u>		- 		7 [];	V		
	Rush Project 24 hrs 48 hrs 3 days (based upon laboratory receipt date	5 days	Detection MI 641	Limits MI 20		r (specif	fy)		er Ter			Quote	Numb	er:		N N				9 2		·	

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD. ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

November 1, 2002

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia

Sample identification by CT&E Environmental Services

Kind of sample

reported to us Liquid

Sample taken at 3025027-002

Sample taken by

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill

Sample ID: S1-TOT-02DP

P.O. No. 109751

Analysis Report No.

71-192508

Page 1 of 1

As Received

TOTAL HALOGENS, ug/g

277 J

METHOD

Total Halogens: SW 846 Module Method 9253

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

MEMBEF

Holland Laboratory

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

November 1, 2002

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAL SOUTH HOLLAND, IL 6047 TEL: (708) 331-296v FAX: (708) 333-3060

www.comteco.com

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia

Sample identification by CT&E Environmental Services

Sample ID: S1-TAZ-01

Kind of sample

reported to us Liquid

Sample taken at 3025027-003

Sample taken by

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill

P.O. No. 109751

Analysis Report No.

71-192509

Page 1 of 1

As Received

TOTAL HALOGENS, ug/g

1278

METHOD

Total Halogens: SW 846 Module Method 9253

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

MEMBER

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

November 1, 2002

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAD SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

Sample identification by CT&E Environmental Services

Kind of sample

reported to us Liquid

Sample taken at 3025027-004

Sample taken by -----

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill Sample ID: S1-TAZ-02

P.O. No. 109751

Analysis Report No.

71-192510

Page 1 of 1

As Received

TOTAL HALOGENS, ug/g

461

METHOD

Total Halogens: SW 846 Module Method 9253

y Kullinz

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

South Molland Laboratory

ACIL

F-465

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 * TEL: 630-953-9300 FAX: 630-953-9306

November 1, 2002

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAL SOUTH HOLLAND, IL 6047

TEL: (708) 331-290u FAX: (708) 333-3060 www.comteco.com

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia

Sample identification by CT&E Environmental Services

Kind of sample

reported to us Liquid

Sample taken at 3025027-005

Sample taken by -----

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill Sample ID: S1-CLA-01

P.O. No. 109751

Analysis Report No.

71-192511

Page 1 of 1

As Received

TOTAL HALOGENS, ug/g

4043

Total Halogens: SW 846 Module Method 9253

Bespectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

MEMBE

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

November 1, 2002

SOUTH HOLLAND, IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060 www.comteco.com

ADDRESS ALL CORRESPONDENCE TO:

16130 VAN DRUNEN ROAD

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia

Sample identification by CT&E Environmental Services

Kind of sample

reported to us Liquid

Sample taken at 3025027-006

Sample taken by

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill Sample ID: S1-ASH-01

P.O. No. 109751

Analysis Report No.

71-192512

Page 1 of 1

As Received

TOTAL HALOGENS, ug/g

1804

METHOD

Total Halogens: SW 846 Module Method 9253

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B. LOMBARD, ILLINOIS 60148 • TEL: 630-953-9300 FAX: 630-953-9306

Member of the SGS Group (Société Générale de Surveillance)

November 1, 2002

ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN ROAE SOUTH HOLLAND, IL 60475 TEL: (708) 331-2900

TEL: (708) 331-2906 FAX: (708) 333-3060 www.comteco.com

CT&E ENVIRONMENTAL SERVICES Anatech Division 1200 Conrad Industrial Dr. Ludington, MI 49431 Attn: Lidya Gulizia

Sample identification by CT&E Environmental Services

Kind of sample

reported to us Liquid

Sample taken at 3025027-007

Sample taken by -----

Date sampled October 22, 2002

Date received October 29, 2002

Project Name: Sybill Sample ID: S1-SCP-01

P.O. No. 109751

Analysis Report No.

71-192513

Page 1 of 1

As Received

TOTAL HALOGENS, ug/q

728

METHOD

Total Halogens: SW 846 Module Method 9253

Thurs.

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

South Holland Laboratory

ACIL

F-465

TOTAL HALOGENS

METHOD: SW 846 Method 9253

Date: 10/30/07 By: M Value

N Titrant: _____0.056(1 ml = 0.002g Cl) QC DATA: Std: ____AP_2006
_____0.028(1ml = 0.001g Cl) Expected Actual

Bk. Titration: 0.8 ml 500 ml 5 515 ms lg

Basis: As Rec'd As Run Dry; Net AgNO3 = Total - Blank

asis. <u> </u>	1100 0	43 Null	_DIY, IN	er Agivos = 10	tal - Dialik
Order No.	Sample ID	Wt.Sample	AgNO3,ml	Net AgNO3	% ⇒⊳ug/g
• ?]	Std: A P2006	1.3588	1.00	0.70	515
2	192507	1.2367	0.40.	0.10	80
3	192508	1-4423	0.70	0:40	277
4	192509	1.0957	1.70	1.40	1278
5	192510	1.1386	0.80	0.50	439
6	DUP	1-0362	0.80	0.50	483
7	192511	1.3851	5.90	5.60	4043
. 8	192512	. 9421	2.00	1.70	1804
9	192513	1,9224	1.70	1.40	728
10	192513 Spiled	1.3201	1.40	1.10	833
	SPIKE ADD	9	ppm		2/
	SPIKE RE	overy - 105			
	% Recove	ry - 10	5		
				-	
	•	·			
•					
	77 _ S _ 67 _ 7	+			

% Halogen (as Cl) = Net AgNO3 x F / Wt. Sample F= 0.2 (If N AgNO3 is 0.056), 0.1 (If N AgNO3 is 0.028)

APPENDIX F

Sample Chains of Custody

Ple	ase S	Sign	gn Sample Identification / Request for Analytical Services Report Results To:												4											
		# Item		2	6	10	Ç-	5,	<u></u> \$.	۳.,	100	_	SAMPLE NO.	Special	NPDES	MERA T	Regulatory	D I	Project Name:	Email Address:	Phone:	City, State,	Mailing	Contact	Client Name:	
2)(13	20	米言		11/12	1.12.12	1 Section	white	1. Bulle	toples	in the state	states	DATE TAKEN			MERA TMDL'S	*. Require	*	Name:	~ 1	i i	ate, Zip Code:	Mailing Address:	Contact Person:	lame:	Assurance Accuracy Accountability
	The state of the s	RELEASED BY	MUST 11		11.30	1356	305	05.51	13.05	DIV.	1215	1150	TIME TAKEN	X	ונורוו	_][]	ments	*	ZVZ		132,	ode:	2	11,	THES	
,	M.) Вү	HRIVE										METALS FIELD FILTERED	پر		Star	Turr	7	1115		/ ハ コ	V/ A	É,	170	777	for p
l <u>.</u>	K)	14. C. C. A.	1 1 10	-		-		<u>S</u>		10	31-1		quires pri	* 2-4 Day (RUSH) * 24 Hour (RUSH)	Standard (2 wk)	naround R				2	165		KC	M	phone toll-free fax
ļ	usa	REC	1. Ect	156						101.	167-	KILL		Requires prior approval	ISH)	* X	Turnaround Requirements		T		7	/L/1	0117	RUB	HILL	231.77 800.73 231.77
1	3	RECEIVED BY		MAL	1	-> < .	127-	15	- ()	-611	01	0	CLIENT	<u> </u>	lJ [_] [ן אַאר-	its		PO #:		Fax:		7	TI.	2)	231.773.5998 800.733.5998 231.773.6537
1	back!	7	27116	5				2.9		7			CLIENT SAMPLE ID	S0 = Sc	SE = Sediment	S = Soil	Matrix Key	Cample		4		41			M	
 -	1/2	Ç.					-	7211					i i	SO = Solid Waste	diment	Đ.	ey la	A	Trace Quote		<i>y</i>	6810	1		2	Trace Analytical Laboratories. 2241 Black Creek Road Muskegon, MI 49444-2673 www.trace-labs.com
	3/67	DATE	1000 CNT												□ >	_ ₹	111	- 13	coròi #		0	(,	+			ytical Li Creek R MI 494 labs.con
1	190	TIME	127	-1		7				_		K	MATRIX		A = Air D = Drinking Water	WI = Wipes	The state of the s			,	0 -		tic			aborato: oad 44-2673
,	13	m	16111	2		<u>'</u>		\propto	2	7	7	(1)	NUMBER OF CONTAINERS		Water	<u> </u>	\perp					· ·				ries, Inc
<u></u>	(2)	#tem	- M1 >4	×		×		×	× ×	×	×	×							<	- P				Э	_	
(4)	3)	RE	1/5			×		У Х	×	×	×	×		K	7				Volatiles Preserved:	Preservati	}			Received on ice	Logged By:	CHAIN-OF-CUSTODY RECORU AND WORK AUTHORIZATION
Ì		RELEASED BY	10000			×		×	×	×	×	×	10	\leq					reserved	servative Checked:				on ice:		WOR-
i) ВҮ			×	× .	X	×	×	×	×	×	TW.	C.				D	HCI	ked:				Yes	5	HAIN-OF-CUSTODY RECORD ND WORK AUTHORIZATION
, L			(X)			×		X	×	×	×	>		\ \	Ų,			ANAI VSIS	МеОН	Yes				o o		ТОР
		RECE	7 / / 7										X		V ~	X.		מות מיני	En Core	No				ဂ္ဂ	Ω	RECO
1		RECEIVED BY	*		1	1.	İ	77.7	CCZ		/			Œ,	3 X.		\ \(\)	BEOLIESTED	re No				*	Cooler Temp (°C)	Checked By:	ORD
					- <u> </u>		17	ļ	1	-									Low Level					np (°C)	3y:	
		DATE			ار در در فرون در در در فرون	10 mm	We kill 18	HINT	CIGNE		i.		TI TI						e							TR/ Page_
		TE	_		وانگرون دی وانگرون دی	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	, T	1	<u> </u>	11		6	REMARKS													TRACE ID NO.
ï		TIME			,			15.0	*	•		7	KS													of NO
													Possibl	le He	alth H	azard										

Please Sign Sample Identification / Request for Analytical Services **Report Results To:** Regulatory Requirements
MERA TMDL's
RCRA
RCRA
NPDES
USACE
Special Phone: Email Address Project #: Project Name: City, State, Zip Code Mailing Address: Client Name: Contact Person #ĕm SAMPLE NO Accountability Accuracy δ **=** DATE TAKEN RELEASED BY TIME TAKEN K METALS FIELD FILTERED Turnaround Requirements
Standard (2 wk) (2/4)

5 Day
-2-4 Day (RUSH)
-24 Hour (RUSH) Requires prior approval 7) RECEIVED BY Fax: 8 W. H. H. CLIENT SAMPLE ID S = Soil OI = Oil SO = Solid Waste SE = Sediment Sampled by: W = Water Matrix Key O١ www.trace·labs.com MAHINE THE Trace Quote 0 DATE D = Drinking Water L = Liquid Waste WI = Wipes 2 1902 TIME MATRIX NUMBER OF CONTAINERS J J V V Ü × < # item X 丈 Preservative Checked Received on ice: Logged By: \M 4 ω Volatiles Preserved: D RELEASED BY X X × Yes $\overline{\Omega}$ ANALYSIS REQUESTED X X 8 MeOH Yes 8 En Core RECEIVED BY Cooler Temp (°C) Checked By ö Low Level Kingled College DATE REMARKS 'ο, TIME

Possible Health Hazard

Assurance

phone toll-free fax

> 231.773.5998 800.733.5998

2241 Black Creek Road Muskegon, MI 49444-2673

Trace Analytical Laboratories, Inc.

CHAIN-OF-CUSTODY RECORD

TRACE ID NO.

AND WORK AUTHORIZATION

5

!

uitu

" agr

ĭnt,

ent.

OWIC

ac

nce.

ğ

Ħe

Ċ

jem€...

I lister on the coverse own.

CT&E Environmental Services Inc.

					<u> </u>	Michigan D	ivislon, 120	00 Conrac	indust	inel Dr., Lu	dington. M	1 49431	-2681				,					
E	CT4E-MI	37,250,27]			- 0	Phone: 23									1	<u>り</u>	#= [39	75	1		
Results To:	CT+E E	W. Services	Project	l Name	.j 1	1				Ţ	est Meth	ods	_				Bot	ile Co	опите		النات	<u> </u>
_	Telephone to	ME 49431 BuliziA *231-543-1877 231-845-994	State in REQU	Number: which sam RED COff	MPLETIC	ON DATE		200		Calorimetry)							ا (مسر		21.1	- Ol enal (Lag		
nvolce To:	Same		requeste	This signature authorizes CT&E to perform the work requested on this form and acknowledges the terms and conditions of payment which are fated on the reverse side of										et.) 5,	reser	vative	ىن ب X		Kesu	
ample No.	Telephone # Cient Sample ID	Sampling Location	Date	Time am / pm	Comp Grab C/G	Sample Matrix	Drenkeng Water Y / 91	Field Filered Y/N	10/1	(B)				pH specific	A > 10 01	I. Amber	230mi !	500ml	1L 20	uz dar I gi	đạz gi	Other
01 .5.1 .5.1 .5.1	-TOT - 02 -TOT - 02DP -TAZ - 01 -TAZ - 02	3025027-00	3	1245 1245 1515 1535		Liq																
51 51	- CLA - OI - ASH- OI - SCA - OI	OI OI	5 6 27 V	1645 1430		V			V										+			
Enquished by		Date / Time (sen / pm)		Protection	Aby J	7			2ala / Tr	24.8	ו אינדיו אינדיו	Restric	1700	200	l.	47			Date / Tin	10 (an/p		- Oux
vjeci Con	nems:	Date / Time (see / pm)	Received by Date / Time (am / pm) Received at Laborate							L		TE			Date / Thr 6-29	re (en/p	85	4				
	•	•									_				ı			0	[r==	U U U	- Frank	$\overline{\Box}$

Detection Limits: : Mi 641 Mi 201

Cooler Temperature:

Quote Number: